
RESULTS

In order to preserve concrete samples from destructive testing and allow better 

experiments to be conducted using simulation, non-destructive methods were 

developed.

These procedures involve using mathematical concepts such as finite elements 

or boundary elements to calculate the behavior of the real element in a specific set 

of conditions.

These methods require a virtual model with as much detail as possible, 

preserving the geometry of the real body. To extract these characteristics, computer 

tomography has proven to be a reliable method to extract a density map showing 

the individual materials of the sample and create a discrete density function for the 

real body.

For the mesh creation from the tomographic images, an implementation of the 

Marching Cubes algorithm was used to extract the isosurface. This posed another 

challenge, as the function to reconstruct the isosurface returned an error related to 

memory overflow after more than 40 minutes of processing.

To address this issue, an alternative Marching Cubes implementation was 

developed, based on the bibliography, using the MATLAB suite for prototyping the 

implemented code and to benchmark the implementation speedup throughout the 

development cycle and different implementations.

A MATLAB script of the Marching Cubes was initially implemented. As an 

intermediate step, a vectorized version of the code and finally, a CUDA version of 

the same algorithm.

Tests were carried out by processing increasingly larger data sets from the 

whole tomographic image space. The times were computed as a way to measure 

the performance increase in time and in memory consumption.

This system was developed as part of a project sponsored within the R&D 

programme of Agência Nacional de Energia Elétrica (ANEEL) to monitor and ensure 

the integrity of the dam structure of the Rio Jordão power plant. A part of the project 

required the extracted sample to be reconstructed in order to undergo non-

destructive testing.

For extracting geometric data from the concrete sample, computer tomography 

was used, generating a dataset composed of 585 tomographic images.

The CPU-based approach was soon dismissed as a not viable option, as it was 

unable to handle the amount of data to be processed, as the solution implemented 

would execute for forty minutes and be aborted due to a memory overflow error.

Previous experiments from the project had shown the GPU approach for the 

problem to be viable, with reduced processing time and memory consumption. As 

such, a CUDA solution was devised as the path to be followed.

The Marching Cubes algorithm was first described by Lorensen and Clyne in 1987 [1], and it was described as a divide-and-conquer approach to generate 

inter-slice connectivity and define triangle topology. In this implementation, the algorithm uses data from the tomographic density maps to create polygonal 

meshes representing the isosurfaces from the materials that compose the concrete samples.

The Marching Cubes algorithm is based on the conditions in which an isosurface intercepts a cube-like cell. As there are 8 vertices in a cube, this 

represents 256 (28) possibilities. Through rotation and similarities operations, these cases can be reduced to only 15, as shown in figure 2.

The massively parallel Marching Cubes implementation using GPU reduced the 

processing time, as shown in the diagrams of Figure 5. Comparing to the serial CPU 

implementation on MATLAB, the vector implementation, also using MATLAB, 

achieved a speedup of more than 10 times, whereas the CUDA implemention 

achieved a speedup of more than 5500 times. For the MATLAB vector 

implementation, the speedup was more than 10x.

For determining which case can be applied to the isosurface reconstruction, the cell vertices and edges receives indices which are used by the algorithm to 

access the vertices, edges and normal vectors to the triangles of the relevant isosurface patch being processed, as illustrated in Figure 3.

V0 V3

V2
V1

V4 V7

V6
V5

E0

E1

E2

E3

E4

E5

E6
E7

E8

E9 E10

E11

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

Figure 2: The Marching Cubes algorithm cases in wich an isosurface can intercept a cube.

Figure 3: The Marching Cubes algorithm cell, its vertices and edges.

Figure 4: Virtual reconstructon of the concrete samples.

For developing the CUDA application and validating the concept, a prototyping based approach was adopted. The code was initially implemented as a 

serial MATLAB script and later vectorized. Finally, the MEX interface of the MATLAB suite was used in order to test the CUDA software module as a dynamic 

library.

The development lifecycle adopted is illustrated in figure 1.

Figure 1: Software development lifecycle.

MASSIVELY PARALLEL ISOSURFACE EXTRACTION OF CONCRETE SAMPLES

The concrete samples used in the project are shown in Figure 1. The samples 

were extracted from the Rio Jordão power plant dam. The tomography procedure to 

which they were subjected is shown in Figure 2.

Figure 1: Concrete samples. Figure 2: Industrial tomography procedure.

It is possible to notice how the GPU processing power can be used in order to 

decrease time in processing intense tasks, even though there are memory 

limitations that require some accessory code to handle large data sets, dividing and 

regrouping portions of the tomographic images space.

The memory transfers, however, must be carefully planned in order to not hinder 

the application execution, excessively increasing processing time.

Cook, S., 2013. Cuda Programming a Developer’s Guide to Parallel Computing with 
GPUs. Elsevier.

Suh, J. W., Kim, Y., 2014. Accelerating MATLAB with GPU Computing. Elsevier.

Lorenssen, W. E. & Cline, H. E., 1987. Marching Cubes: A High Resolution 3D 
Surface Construction Algorithm. Computer Graphics, vol. 21, n.4, pp.163-169.

de Geus, K., Godoi, W. C., Junior, S. R., Swinka-Filho, V., 2012. 3D reconstruction 
of industrial computed tomography applied to concrete samples of power plant 
dams: CPU versus GPU- based processing. 6th International Symposium on 
Process Tomography, pp. 1-7, Cape Town, South Africa.

Farber, R., 2011. CUDA Application Design and Development. Elsevier.

Kirk, D. B. & Hwu, F. M-W., 2011. Programando para Processadores Paralelos. 
Campus.

Ricardo César Ribeiro dos Santos (ricardo.santos@ufpr.br), Klaus de Geus, Walmor Cardoso Godoi

10 20 50 100 300 400 500 589

0

5

10

15

20

25

30

35

40

45

Processing time for the Marching Cubes implementation

GPU Parallel Code 

Tomographic slices on the dataset

T
im

e 

(i
n 

s
e

co
n

d
s

)

10 20 50 100 300 400 500 589

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Processing time for the Marching Cubes implementation

MATLAB vectorized code GPU Parallel Code MATLAB serial code 

Tomographic slices on the dataset

T
im

e

 

(i
n

 

s
e

c
o

n
d

s
)

10 20 50 100 300 400 500 589

0

100

200

300

400

500

600

Processing time for the Marching Cubes implementation

MATLAB vectorized code GPU Parallel Code 

Tomographic slices on the dataset

T
im

e 

(i
n 

s
e

co
n

d
s

)

Figure 4: Virtual reconstructon of the concrete samples.

CONTEXT

MATERIALS

DEVELOPMENT LIFECYCLE

THE MARCHING CUBES ALGORITHM

RECONSTRUCTED SURFACES

REFERENCES

CONCLUSION

Serial MATLAB code
 

 
Code vectorization

Serial MATLAB
vectorizedcode

CUDA implemetation
and MEX interface

Massive parallel
CUDA implementation

 

The polygonal meshes produced by the developed application are depicted in Figure 4 and showed to be sufficiently detailed for non-destructive testing 

procedures.

The memory consumption was unexpectedly high, surpassing the available memory in the GPU memory space. To overcome this challenge, a memory 

management code was implemented. Essentially, it just divided the dataset in equal intervals that were sequentially dispatched for processing. In a subsequent 

step, the processing results were joined in order to produce the whole reconstructed mesh.

PPGMNE
PROGRAMA DE PÓS-GRADUAÇÃO EM
MÉTODOS NUMÉRICOS EM ENGENHARIA

INTRODUCTION

contact Name 

Ricardo Santos: ricardo.santos@ufpr.br
Poster 

P5116

Category: Visualization - In-Situ & Scientific - VS02


