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Abstract:- We propose a GPU parallelization of MFHLSNN [2], which is modification to [1]. It learns patterns in terms of hyper line segments (HLSs), which are fuzzy 
sets and are associated with fuzzy membership function.  We achieved 2.5x, 10.75x and 10.71x speedup for training, classification and recognition phases, 
respectively, for this neural network, using NVIDIA's  single Tesla K20 GPU for the skin data set [3], with 99.7% recognition. 
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Conclusion:- 
We obtained 99.7% recognition for threshold 0.85, with 2.5x, 10.75x and 10.71x 
speedup for training, classification and recognition phases, respectively.  We can 
expecting better speedup for larger data sets. 

MFHLSNN training Algorithm  

Platform Used 
CPU: Intel's Xeon(R) CPU E5-1620, 3.60 GHz, 16 GB RAM, windows 7, 64 bit OS, 
Release mode, x64 platform, Windows-7,  VC++ on VS2010.  
GPU: NVIDIA’s Tesla k 20, CUDA toolkit- 5.5 

GPU parallelization of MFHLSNN training 
Computing membership of i th training pattern in all existing HLSs, is parallelized 
on GPU by launching k CUDA threads, if k HLSs are stored in V and W.   

Data set used 
We used skin segmentation data set from UCI repository [3]. It contains 245057 
instances, 4 attributes and 2 classes. We used half instances for training and half for 
the testing phase. 
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GPU parallelization of MFHLSNN Classification 
Computing membership of i th training pattern in all r existing 
HLSs, is parallelized on GPU by launching r CUDA threads. We 
store ith pattern in GPU shared memory. The maximum fuzzy 
membership is computed using CUDA reduction kernel. 

MFHLSNN is a four layer neural network. First 
layer (A) simply accepts input patterns and 
forward it to next layer. Second layer (B) nodes 
represents  HLSs and are created  during training. 
Third layer (C) represents class nodes and gives 
soft decision. Fourth layer (D) gives hard decision. 
Weights between layers A and B are stored in 
matrices V and W. Matrix U is used to store 
weights on links connecting layer s B and C. 

MFHLSNN Architecture  
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