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Introduction Copy Bandwidth Between Components in a Multi-GPU System Results: Co-Scheduling Performance

> Heterogeneity iS everywhere From/TO MN 0 MN 1 GPU 0 GPU 1 GPU 2 GPU 3 Devices and Scheduler -cpu adaptive| /" |cpu,cuda adaptive| / |cpu,cuda static| / |cuda adaptive-cuda static
» Accelerators are gaining popularity: GPUs, FPGAs, DSPs etc. Memory Node (MN) 0 12,407 8,704 3,851 3,855 3,785 3,758 5 o p—
» NUMA memory is proliferating Memory Node (MN) 1 8,963 17,920 3,795 3,771 4,032 4,096 s

» Even homogeneous systems are heterogeneous due to OS noise! Interleaved 15,639 14,298 3,454 3,238 3,429 3,457 7o
» Programming models like OpenMP 4.0 and OpenACC are being created to address GPU 0 3,460 2,926 97,469 4890 N/A  N/A
heterogeneity, but do not handle multiple devices GPU 1 3,460 2922 4,890 97,619 N/A N/A

» CPU models like OpenMP handle multiple devices, but do not address hierarchical GPU 2 2,833 3971 N/A  N/A 97,630 4,890
e GPU 3 2820 4108 N/A N/A 4890 97,636
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Main Question
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Speedup over 8 core OpenMP
&

How can we address hierarchical memory and multiple accelerators with a single, unified extension
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Our Solution: Memory Association and Work Partitioning Adaptation: Load-balancing for Partitioned Worksharing
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Manual Partitioning Variables Number of GPUs
arr [WORK_SIZE] = {0};

» Partition a range across threads or devices | = total iterations available

» Parallel regions can be partitioned across threads, Results: Data-movement Cost of Frequent Re-Balancing

much like a workshared loop
» Target for loops can be partitioned, rather than
scheduled, to split a loop across target devices

to f; = fraction of iterations for compute unit
int tid = omp_get_thread_num() ;

int nt = omp_get_num_threads(); p; = recent time / iteration for compute unit J Time contribution | /|compute
int iters = WORK_SIZE / nt; )
int start - tid * iters; n = number of compute devices

int end = start + iters;

do_work(start, end, arr) ; - . ) = time over (or under) equal &

Helmholtz-Nested
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» Specify the association between input, output, and a
partitioned range by extending the map clause

)

Linear Program
Extended Partitioning 2 Helmholtz

float arr[WORK_SIZE] = {0}; ) s _
int start = O; mln( tj _I_ tj )
int end = WORK_SIZE;

n_

» Add a mapping type option, to support indirect and
user-defined mappings

» Bind the partitioning to a mapped variable to
partition that variable along with the data

Time (milliseconds

J

{ E‘ [:
int tid = omp_get_thread_num() ; /
Jj=0

int nt = omp_get_num_threads();

» Nest partitioned parallel or target regions to
address hierarchical memory systems

do_work(start,end,arr) ; ' ' ' ' ; ; '
— ) ’ ’ . _ 20 30 40 50 60 70 80
f2 * P2 fl * P1 = Inner loop size
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» Adaptively partition to achieve load-balance across the fi p3 — % pp =

devices

Results: Memory-Movement Optimization
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Example Usage: GEMM P ER Stream Bandwidth with NUMA GEMM CPU-only with NUMA
In Words Policies Policies

1 |float Ali_size] [j_size], Bli_size] [j_size]; Lines 4-5 Create one thread on each OpenI\/IP “place” and M|n|m|ze the sum Of dlfferences between eaCh dev'ce’s predlcted Policy .coherent interleave | /| migrate optimal_first_touch.replicate_all Policy .coherent interleave| /| migrate migrate_interleaved.replicate_al\

2 |[float *C = (float*)malloc(sizeof(C[0])*i_sizex*j_size);

int C_stride = j_size, j_start = 0, j_end = j_size; partition the devices across them runtime and the predicted runtime of other devices, or minimize 5- Systom Systom 2 adapiive statc

Line 6 Partition the range j_start to j_end across devices, Waiting/blocking time.
binding the device's range to j_id, partitioning the
inner loop

Memory Association Types
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Line 7 Map the B matrix in completely, partition the columns

of the A matrix according to j id 2D Array: Segmented Array: Indexed Array:

Line 8 Map the C matrix in partitioning the columns with -
CPU 1 egments array:

range j_id 12,16,5,15,10,7,8,11,4,1,9,12,6,10,3,9
for (int i = 0; i < i_size; ++i) { CPUO GPUO GPU1

// Optional Line 11 Split this target across all devices, map in all of A Target array: Index array: I I I I o_i II II Ii I I I

LI LT 111
for (int j = j_start; j < j_end; ++j) { from the outer partitioning and partition B by FOws p| 0{ — \ Add Colpy Scale  Triad Add Cc;py Scale  Triad False True e e
ace
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Time (seconds)
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Speedup over single—node allocation

o
|

float sum = 0.0: [ [T 1] Stream test Partition by sockets, True, or directly by devices, False
o Line 12 Partition the outer loop with the adaptive schedule
for (int k = 0; k < k_size; ++k) { ' P P :

sum += A[k][j] * B[il [k]; binding the range to i, map C in and out partitioned
to match the i range with the new stride stored in

C stride # C .. . e 0. : e
Line 14 Bind the timing of the j.id partitioning to the inner  CCTErETTErrre Partitioning simplifies a common pattern, while increasing the capabilities of the

loop CPU 6 Target array: compiler and runtime

{ \ Conclusions

}

C[i * C_stride + j] = sum;

Place 1

Memory association decouples data mapping from devices, allowing the runtime to
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