CATEGORY: DEVELOPER - PROGRAMMING LANGUAGES - DL01

POSTER CONTACT NAME

P5128 Thomas Scogland: tom@scogland.com

ug Lawrence Livermore Locality-Aware Memory Association for Multi-Target Worksharing in OpenMP @ijginia’rech

National Laboratory
o hoe o Thomas R. W. Scogland®* Wu-chun Feng" Bronis R. de Supinski* invent the Future
scogland1@lIInl.gov feng@cs.vt.edu bronis@lInl.gov

“Lawrence Livermore National Laboratory, Livermore, CA 94551 TDepartment of Computer Science, Virginia Tech, Blacksburg, VA 24060 USA. USA

Introduction Copy Bandwidth Between Components in a Multi-GPU System Results: Co-Scheduling Performance

> Heterogeneity iS everywhere From/TO MN 0 MN 1 GPU 0 GPU 1 GPU 2 GPU 3 Devices and Scheduler -cpu adaptive| /" |cpu,cuda adaptive| / |cpu,cuda static| / |cuda adaptive-cuda static
» Accelerators are gaining popularity: GPUs, FPGAs, DSPs etc. Memory Node (MN) 0 12,407 8,704 3,851 3,855 3,785 3,758 5 o p—
» NUMA memory is proliferating Memory Node (MN) 1 8,963 17,920 3,795 3,771 4,032 4,096 s

» Even homogeneous systems are heterogeneous due to OS noise! Interleaved 15,639 14,298 3,454 3,238 3,429 3,457 7o
» Programming models like OpenMP 4.0 and OpenACC are being created to address GPU 0 3,460 2,926 97,469 4890 N/A N/A
heterogeneity, but do not handle multiple devices GPU 1 3,460 2922 4,890 97,619 N/A N/A

» CPU models like OpenMP handle multiple devices, but do not address hierarchical GPU 2 2,833 3971 N/A N/A 97,630 4,890
e GPU 3 2820 4108 N/A N/A 4890 97,636

N
o
I

—
(6}
1

5.0 -

—_
o
|

2.5-

o
(0)
I

o
o
I

0.0-

2 3 2 3
helmholtz helmholtz—nested

Main Question

N
o
I

Speedup over 8 core OpenMP
&

How can we address hierarchical memory and multiple accelerators with a single, unified extension

—_
o
|

o
(O)
I

Our Solution: Memory Association and Work Partitioning Adaptation: Load-balancing for Partitioned Worksharing

o
o
I

Manual Partitioning Variables Number of GPUs
arr [WORK_SIZE] = {0};

» Partition a range across threads or devices | = total iterations available

» Parallel regions can be partitioned across threads, Results: Data-movement Cost of Frequent Re-Balancing

much like a workshared loop
» Target for loops can be partitioned, rather than
scheduled, to split a loop across target devices

to f; = fraction of iterations for compute unit
int tid = omp_get_thread_num() ;

int nt = omp_get_num_threads(); p; = recent time / iteration for compute unit J Time contribution | /|compute
int iters = WORK_SIZE / nt;)
int start - tid * iters; n = number of compute devices

int end = start + iters;

do_work(start, end, arr) ; - .) = time over (or under) equal &

Helmholtz-Nested

1
2
3
4
o}
6
7
8
9
0

1

» Specify the association between input, output, and a
partitioned range by extending the map clause

)

Linear Program
Extended Partitioning 2 Helmholtz

float arr[WORK_SIZE] = {0};) s _
int start = O; mln(tj _I_ tj)
int end = WORK_SIZE;

n_

» Add a mapping type option, to support indirect and
user-defined mappings

» Bind the partitioning to a mapped variable to
partition that variable along with the data

Time (milliseconds

J

{ E‘ [:
int tid = omp_get_thread_num() ; /
Jj=0

int nt = omp_get_num_threads();

» Nest partitioned parallel or target regions to
address hierarchical memory systems

do_work(start,end,arr) ; ' ' ' ' ; ; '
—) ’ ’ . _ 20 30 40 50 60 70 80
f2 * P2 fl * P1 = Inner loop size

S © 00 N O O = W N o~

—_

}
» Adaptively partition to achieve load-balance across the fi p3 — % pp =

devices

Results: Memory-Movement Optimization

ﬁ1 n— fi — Lh— h . . .
Example Usage: GEMM P ER Stream Bandwidth with NUMA GEMM CPU-only with NUMA
In Words Policies Policies

1 |float Ali_size] [j_size], Bli_size] [j_size]; Lines 4-5 Create one thread on each OpenI\/IP “place” and M|n|m|ze the sum Of dlfferences between eaCh dev'ce’s predlcted Policy .coherent interleave | /| migrate optimal_first_touch.replicate_all Policy .coherent interleave| /| migrate migrate_interleaved.replicate_al\

2 |[float *C = (float*)malloc(sizeof(C[0])*i_sizex*j_size);

int C_stride = j_size, j_start = 0, j_end = j_size; partition the devices across them runtime and the predicted runtime of other devices, or minimize 5- Systom Systom 2 adapiive statc

Line 6 Partition the range j_start to j_end across devices, Waiting/blocking time.
binding the device's range to j_id, partitioning the
inner loop

Memory Association Types

—
(o))
o

Line 7 Map the B matrix in completely, partition the columns

of the A matrix according to j id 2D Array: Segmented Array: Indexed Array:

Line 8 Map the C matrix in partitioning the columns with -
CPU 1 egments array:

range j_id 12,16,5,15,10,7,8,11,4,1,9,12,6,10,3,9
for (int i = 0; i < i_size; ++i) { CPUO GPUO GPU1

// Optional Line 11 Split this target across all devices, map in all of A Target array: Index array: I I I I o_i II II Ii I I I

LI LT 111
for (int j = j_start; j < j_end; ++j) { from the outer partitioning and partition B by FOws p| 0{ — \ Add Colpy Scale Triad Add Cc;py Scale Triad False True e e
ace

—
o
o

Time (seconds)

()]
o
|

Speedup over single—node allocation

o
|

float sum = 0.0: [[T 1] Stream test Partition by sockets, True, or directly by devices, False
o Line 12 Partition the outer loop with the adaptive schedule
for (int k = 0; k < k_size; ++k) { ' P P :

sum += A[k][j] * B[il [k]; binding the range to i, map C in and out partitioned
to match the i range with the new stride stored in

C stride # C .. . e 0. : e
Line 14 Bind the timing of the j.id partitioning to the inner CCTErETTErrre Partitioning simplifies a common pattern, while increasing the capabilities of the

loop CPU 6 Target array: compiler and runtime

{ \ Conclusions

}

C[i * C_stride + j] = sum;

Place 1

Memory association decouples data mapping from devices, allowing the runtime to
Related Papers mutate the data however is most appropriate

Our prototype achieves up to a 50x speedup over eight core CPU with four GPUs,
[1] T. R. W. Scogland, B. R. de Supinski, and W. Feng. Locality-Aware Memory Association for Multi-Target Worksharing in OpenMP. In International Conference on Parallel Architectures and Compilation and we show a nearly 2x speedup for a previously averse benchmark as well

Techniques, 2015, under preparation. When applied to mitigating NUMA affinity issues, we also see improvements of as
[2] T. R. W. Scogland, W. Feng, B. Rountree, and B. R. de Supinski. CoreTSAR: Core task-size adapting runtime. IEEE Transactions on Parallel and Distributed Systems, 2014 Accepted. PP & & y ! P

o . .
[3] T. R. W. Scogland, B. Rountree, W. Feng, and B. R. de Supinski. Heterogeneous Task Scheduling for Accelerated OpenMP. In International Parallel and Distributed Processing Symposium, pages 144-155. much as 40/0_ in the bandV\{Idth of the stream benchmark, ar_]d greaFer_ th&_m S
IEEE Computer Society, May 2012. performance improvement in the performance of dense matrix multiplication on the

[4] T. R. W. Scogland, B. Rountree, W. Feng, and B. R. de Supinski. CoreTSAR: Adaptive Worksharing for Heterogeneous Systems. In International Supercomputing Conference, Leipzig, June 2014. CPU with appropriate policies

