
0

0.5

1

1.5

2

2.5

3

3.5

4

-16 -12 -8 -4 0 4 8 12 16

v x

z

Theoretical

CPU

GPU

Verification and Speedup

Zone size 
(number of particles) 

6×4×8
（864） 

64×8×32
（67584） 

256×16×32
（540672） 

256×32×32
（1081344） 

CPU update speed
（particles/s)

 1.65×105 3.10×105 3.11×105 3.07×105 

GPU
update
speed

(particles/s)

 

 

 

 

Thread - Cell  5.25×104 1.74×106 3.16×106 3.59×106 

Speedup 0.32 5.61 10.16 11.69 

Thread - particle 1.51×105 3.69×106 5.23×106 5.82×106 

0.92 11.90 16.82 19.15 

Interaction-List 9.78×105 1.35×107 1.46×107 1.49×107 

5.92 43.61 46.84 48.35 

 

Speedup 

Speedup 

Velocity profile 2
(CPU&GPU)

Velocity profile 1
(Theoretical&CPU&GPU)

Speedup in different zone sizes and different algorithm

Accelerating Dissipative Particle Dynamics with GPU
Lin Chen-sen1)   Chen Shuo1)   Li Qi-Liang2)   Yang Zhi-Gang2) 

1) School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai,200092, China
2) Shanghai Automotive Wind Tunnel Center, Tongji University, Shanghai,201804,China

The implement of GPU parallel computing of 
dissipative particle dynamics based on CUDA was 
carried out. Some issues involved, such as thread 
mapping, parallel cell-list array updating, generating 
pseudo-random number on GPU, memory access 
optimization and loading balancing are discussed in 
detail; Furthermore, Poiseuille flow and suddenly 
contracting and expanding flow were simulated to 
verify the correctness of GPU parallel computing. 
The results of GPU parallel computing of DPD show 
that speedup is up to 50X compared with CPU serial 
computing.

Introduction

Evolution of a red blood cell passing 
through a converging-diverging duct 

Stretching response for constriction with 
different size at different time

Coarse grained Simulation 
of Red Blood Cells 

Stretching Deformation

Evolution of a red blood cell 
passing through a duct 

Simulation of massive red blood cell (ongoing)

Simulation of red blood cells with GPU

Methods

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 31

Thread 32

Thread 1-32

Interaction particle

Computing particle

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

Thread 31

Thread 32

Interaction particle Non-Interaction particle

Computing particle Skip Computing particle

Thread 1-32

Original algorithm  VS  IAL algorithm

Update IAL  every N steps

Average time  (ms/step)

Compute forces

Update IAL

Compute forces + Update IAL

Without IAL

Update IAL every step

Algorithm of generating random number on GPU

Cell approach
(avoid searching global, 

even 14 cells are sufficient)

Effect of IAL 
algorithm with 

different 
parameters

contact Name 

Chensen Lin: 1132033@tongji.edu.cn
Poster 

P5131

Category: Computational Physics - CP06


