CATEGORY: DEVELOPER - ALGORITHMS - DA04 CONTACT NAME POSTER P5132

Ivan Goryachev: kvant87@gmail.com

- 1. Model of calculation is created and developed for heterogeniuos systems involving GPGPU. 2. Model of calculation is implemented for the problem of full matrix multiplication.
- 3. New class LRnLA algorithms was developed and named Diamond Domino/Diamond Tile. These algorithms are optimized in relation of calculation locality for explicit finite-difference methods with local cross scheme. 4. Developed algorithms give the performance around 33% from peak and operate with 90% communication resources of memory
- hierarchy. The speed of calculations achieve 10^9 Yee Cells per second for Maxwell architecture (750 Ti) and $5 \cdot 10^9$ Yee Cells per second for Kepler architecture (GTX Titan Black).

LRnLA Model of Computation for Geterogenious Calculations Goryachev Ivan, Levchenko Vadim, Zakirov Andrey

Keldysh Institute of Applied Mathematics, Moscow, Russia

Similarities and differences b	etween two problems		
$\frac{\mathbf{GEMM}}{\mathbf{Data volume:}} D = 3N^2$	$\frac{\textbf{FDTD}}{\text{Data volume: } D = 6N^3}$		
Number of operations: $O = N^3$	Number of operations: $O = 30N^3 N_t$		
$O(D) = (1/3^{3/2})D^{-1/2}$	for $N_t > N$ let: $N_t = N \cdot N_T$		
(O/D)(D):	$O(D) = N_T (6/30^{4/3}) D^{1+\frac{1}{3}}$		
Coefficient of locality= $N/3 = \sqrt{D/3}$.	Coefficient of locality ~ $\sqrt[3]{D}$.		
mxw3D = accelerator (GPG)	$PO) + LRnLA algorithms \vec{J}$		
$\frac{1}{c}\frac{\partial B}{\partial t} = -\nabla \times \vec{E}, \mu \vec{H} = \vec{B}$	$\epsilon, \frac{1}{c} \frac{\partial D}{\partial t} = \nabla \times \vec{H}, \epsilon \vec{E} = \vec{D}$		
FDTD scheme for Maxwell's equations:	(<i>i</i> , <i>j</i> +1, <i>k</i> +1) (<i>i</i> +1, <i>j</i> +1, <i>k</i> +1)		
s = 1, 2, 3, p = (s + 1)%3, m = (s - 1)%3	(i+1, j, k+1)		
$\hat{\Delta}_{s}$ is finite operator for $(2^{nd}, 4^{th} \text{ orders})$	Dy, Ey		
$\hat{\mu}_s^{-1}, \hat{\varepsilon}_s^{-1}$ operators for media model. (i, j	B_{y}, H_{y} D_{z}, E_{z} $(i+1, j+1, k)$ B_{x}, H_{x} $(i+1, j, k)$		
$B_{s,i}^{k+\frac{1}{2}} = B_{s,i}^{k-\frac{1}{2}} - c\Delta t \left(\hat{\Delta}_p E_{m,\tilde{i}}^k\right)$	$-\hat{\Delta}_{m} E_{p,\tilde{i}}^{k} \right), H_{s,i}^{k+\frac{1}{2}} = \hat{\mu}_{s}^{-1} \vec{B}_{i}^{k+\frac{1}{2}},$		
$D_{s,\tilde{i}}^{k+1} = D_{s,\tilde{i}}^{k} + c\Delta t \left(\hat{\Delta}_{p}H_{m,i}^{k+\frac{1}{2}} - \right)$	$-\hat{\Delta}_m H_{p,i}^{k+\frac{1}{2}}\right), E_{s,\tilde{i}}^{k+1} = \hat{\varepsilon}_s^{-1} \vec{D}_{\tilde{i}}^{k+1},$		
$egin{array}{c c c c c c c c c c c c c c c c c c c $	$egin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c} \hat{\mu}_s^{-1}, \hat{\varepsilon}_s^{-1} & 0 & 1 & 1\\ \hline 6 \text{ pair} & 12 & 18 & 42 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$cells/sec$ $80 \cdot 10^9$ $1.5 \cdot 1$ peak performance GeForce Titan: 5TIbandwidth:288.4GB/sec	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
 Pop-up problems during the realization Caches (L1 and L2) are too cal 3D simulation, to avoid the module (256KB per module) is module (256KB per module) is length; it is optimal to consider as Nx > Ny > Nz = 64 ÷ 25 	on of algorithms on architecture Kepler small for data localization in numeri this problem the register file of $SM(X)$ is suitable to use; to limit of the maximum of vector der quasi-2D tasks with grid size ratio 6.		
 Specifics of CUDA realization of I CUDA-thread index corresponsolving the problems with volume to the problems with volume to the second second term a local second term of the second term of the second term of terms of the second terms of terms of	ARnLA algorithms nds to Yee Cell index along Z-axis for ectorization, that is mean aligned ac neity, occupancy of SMX module cores for execution of finite-difference opera		
 CUDA-block index correspond vide asynchronous execution of without data dependences (it CUDA-kernel consist of N_t loce 	Is to Yee Cell index along Y-axis to proof calculations by different SM-modules is odd and even passes required). op steps which are executed along $x - \tilde{c}$		
axis. At each step electrom trapped to diamond region ar for electric and magnetic fie The distance between halves numerical scheme order. The Yee Cells chosen for increasin	agnetic field components of Yee Cell re executed. Diamonds splits two type lds and are named Diamond Domino of Domino along X-axis is quoted by size of diamond region is $2 \cdot N_{\text{DT}} \times N_{\text{DT}}$ ng the locality of calculations. N_{DT} i		
• Host calls CUDA-kernel N_x , along X-axis. Before the end steps and corresponding comp	$/N_{\rm DT}$ times in the loop when move of the loop all data are moved to $N_{\rm p}$		

The table below discribes agreement between hierarchy levels of memory system and parallelism for Diamond Tile algorithms.					
registers		=tid.x	$4n^3$ Cell/DT		1 11
share	$\frac{\partial}{\partial z}$	aligned	\rightarrow fetches of		
cache L1		coalesced	${\it independent}$		
cache L2		exchange	calculations	DTs along y	
GDDR5		per $128B$		is asynch.	window
PCIe					of calcu-
-DDR $3/4$					lations
	thread	warp	block	grid	UVM
	$N_{\mathcal{Z}}$	$N_z/32$	$N_y/2n$	Nx/n	
where					
$N_x \times N_y \times N_z$ Yee Cells is simulation domain;					

of Diamond Tile (handles $2n^2$ Yee Cells in 2n time layer) access to neibour Cells along z axis accoding cross scheme $(i_z \pm 1, \ldots)$

Bibliography

1. Kurzak J., Tomov S., Dongarra J., «Autotuning GEMMs for Fermi», SC11 November 12-18, 2011, Seattle, Washington, USA. 2. Lebesgue H., «Lecons sur l'Integration et la Recherche des Fonctions Primitives», Gauthier-Villars, 1904. 3. http:/www.kiam.ru/MVS/resourses/k100.html 4. Levchenko V.D. «Asynchronous algorithms as the method of reaching by the effectiveness of calculations. Information technologies and computing systems»,

- 2005(1).
- Propagation 14 (3): 302–307, 1966.

GPU TECHNOLOGY CONFERENCE

K	ussia	

saved for further usage and analysis.

5. J.Sanders, E.Kandrot, «CUDA by Example: An Introduction to General-Purpose GPU Programming». 6. Kane Yee, «Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media», IEEE Transactions on Antennas and