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LRnLA Model of Computation for general matrix multiplication
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Result Performance for general matrix multiplication
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Algorithmic principles for matrix multiplication
Five level algorithm of full matrix multiplication

Size of matrix: N = (1 ÷ 7) × 215 (28GB per node)
Number of nodes: 1 : 4 : 9 : 25 : 36 : 49
Ai,Bi, Ci initialize at individual node. Data sending by MPI_Isend();
Ci is calculated at individual node: C0 = A0 · B0 + A2 · B1
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3 GPU-devices at one node.
Data are stored in RAM (DDR3)
of each node by means of local-
recursive type CubeLR.
Distribution of tasks on GPUs for
calculation Ci is conducted in ac-
cordance with Hilbert’s curve to
retain the locality of data.
Usage of heterogeneous system: 3
GPU + CPU.

Three level algorithm for full matrix multiplication
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Global memory volume of one
GPU is 2560 MB
Data localized in global mem-
ory GPU are merged on sub-
structures to localized them in
cache memory.
Volume of L2 is 768 РӘРҪ.
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Data are localized in memory of each SM and
handled by different program-blocks (not CUDA-
blocks!).
Program-block consists of CUDA-threads groups
with size of
1x1 / 2x2 / 4x4 / 16x8 / 8x8,
that makes possible to utilize register memory.
CUDA-thread group splits into hardware struc-
tures named "half warp". It guarantees conflict-
free access to the aligned address space of local
memory.
Process of calculation is handled by local-recursive
traversal CubeLR.

Similarities and differences between two problems

GEMM
Data volume: D = 3N2

Number of operations: O = N3

O(D) = (1/33/2)D
1+ 1

2

(O/D)(D):
Coefficient of locality= N/3 =

√
D/3.

FDTD
Data volume: D = 6N3

Number of operations: O = 30N3Nt,

for Nt > N let: Nt = N · NT

O(D) = NT (6/304/3)D
1+ 1

3

Coefficient of locality ∼ 3√
D.

mxw3D = accelerator (GPGPU) + LRnLA algorithms
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FDTD scheme for Maxwell’s
equations:

s = 1, 2, 3,
p = (s + 1)%3,
m = (s − 1)%3

∆̂s is finite operator for (2nd,
4th orders)

µ̂−1
s , ε̂−1

s operators for media
model.
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+/- fma ld st +/- fma ld st
∆̂s 1 1 3 1 2 2 6 1

µ̂−1
s , ε̂−1

s 0 1 1 1 4 4 11 1
6 pair 12 18 42 6 48 48 72 12

cells/sec 80 · 109 1.5 · 109 25 · 109 0.8 · 109

peak performance GeForce Titan: 5TFlops (float),
bandwidth: 288.4GB/sec
Pop-up problems during the realization of algorithms on architecture Kepler

• Caches (L1 and L2) are too small for data localization in numeri-
cal 3D simulation, to avoid this problem the register file of SM(X)
module (256KB per module) is suitable to use;

• Increasing the locality leads to limit of the maximum of vector
length; it is optimal to consider quasi-2D tasks with grid size ratio
as Nx > Ny > Nz = 64 ÷ 256.

Specifics of CUDA realization of LRnLA algorithms
• CUDA-thread index corresponds to Yee Cell index along Z-axis for

solving the problems with vectorization, that is mean aligned ac-
cess to memory, code homogeneity, occupancy of SMX module cores.
Shared memory are explored for execution of finite-difference opera-
tors ∂/∂z along Z-axis.

• CUDA-block index corresponds to Yee Cell index along Y-axis to pro-
vide asynchronous execution of calculations by different SM-modules
without data dependences (it is odd and even passes required).

• CUDA-kernel consist of Nt loop steps which are executed along x−c̃t
axis. At each step electromagnetic field components of Yee Cells
trapped to diamond region are executed. Diamonds splits two types
for electric and magnetic fields and are named Diamond Domino.
The distance between halves of Domino along X-axis is quoted by
numerical scheme order. The size of diamond region is 2·NDT×NDT
Yee Cells chosen for increasing the locality of calculations. NDT is
varied.

• Host calls CUDA-kernel Nx/NDT times in the loop when moves
along X-axis. Before the end of the loop all data are moved to Nt
steps and corresponding components of the field may be visualised or
saved for further usage and analysis.

The table below discribes agreement between hierarchy levels of memory
system and parallelism for Diamond Tile algorithms.

SIMT DLP ILP TLP PLP
registers iz=tid.x 4n3 Cell/DT

share ∂
∂z

aligned → fetches of
cache L1 coalesced independent
cache L2 exchange calculations DTs along y
GDDR5 per 128B is asynch. window

PCIe of calcu-
DDR3/4 lations

thread warp block grid UVM
Nz Nz/32 Ny/2n Nx/n

where
Nx × Ny × Nz Yee Cells is simulation domain;

n is linear size of Diamond Tile (handles 2n2 Yee Cells in 2n time layer)
∂
∂z

access to neibour Cells along z axis accoding cross scheme (iz ± 1, . . . )

Diamond Domino and Diamond Tile algorithms
Cross scheme Scheme (2, 2)
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Diamond Tile Scheme (2, 4)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  50  100  150  200  250  300

A
c
h

ie
v
e

d
 c

a
lc

u
la

ti
o

n
s
 r

a
te

, 
1

0
9
 Y

e
e

 c
e

lls
/s

e
c

Memory throughput, GB/sec

GTX Titan

GTX 660

C2050

GTX 550Ti

GT640M LE

Result efficiency

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700
Grid size along Z-axis (Number CUDA-threads)

Sp
ee

d 
of

 c
al

cu
la

tio
ns

, 
 1

09  
Ye

e 
Ce

lls
 p

er
 s

ec
on

d 

GTX 750 Ti (without PML)
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Conclusion
1. Model of calculation is created and developed for heterogeniuos systems involving GPGPU.
2. Model of calculation is implemented for the problem of full matrix multiplication.
3. New class LRnLA algoruthms was developed and named Diamond Domino/Diamond Tile. These algorithms are optimized in

relation of calculation locality for explicit finite-difference methods with local cross scheme.
4. Developed algorithms give the performance around 33% from peak and operate with 90% communication resources of memory

hierarchy. The speed of calculations achieve 109 Yee Cells per second for Maxwell architecture (750 Ti) and 5 · 109 Yee Cells per
second for Kepler architecture (GTX Titan Black).
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