
REAL-TIME INCREMENTAL PRINCIPAL COMPONENT PURSUIT
FOR VIDEO BACKGROUND MODELING ON THE TK1

Paul Rodrı́guez
Pontificia Universidad Católica del Perú, Peru

prodrig@pucp.edu.pe

ABSTRACT

Principal Component Pursuit (PCP) is currently considered to
be the state of the art method for video background modeling, an
important pre-processing step for automated video analysis sys-
tems. Nevertheless, PCP suffers from a number of limitations,
two prominent ones being its high computational cost and the
fact that it is batch method: a large number of frames have to
be observed before starting any processing, resulting in a large
memory requirements, usually in the order of 1 ∼ 10 giga-bytes.

In this work we present a real-time, GPU-enabled / CUDA-
aware (unified memory model) implementation of a novel and
fully incremental PCP algorithm for video background model-
ing: it processes one frame at a time, obtaining similar results
to classical (batch) PCP algorithms, while being able to adapt
to changes in the background. Our implementation has an ex-
tremely low memory footprint, and a computational complexity
that allows (on the Jetson TK1 platform) a processing frame rate
throughput of 27.8 and 9.4 f.p.s. for grayscale videos of 640×480
and 1920 × 1088 respectively.

1. INTRODUCTION

VIDEO background modeling, which consists of segmenting
the moving objects or “foreground” from the static ones or

“background” is an important task in several applications.
Given the importance of the video background modeling prob-

lem, recent publications (see [1] among others) have focused on
presenting a systematic evaluation and comparative analysis of
several Principal Component Pursuit (PCP) / Robust Principal
Component Analysis (RPCA) [2, 3] based algorithms, which are
considered to be the state of the art for the video background
modeling problem (see [4] for a survey of alternative methods).
In this context, the PCP problem is

arg min
L,S

‖L‖∗ + λ‖S‖1 s.t. D = L + S (1)

where D ∈ Rm×n is the observed video of n frames, each of
size m = Nr × Nc × Nd (rows, columns and depth or channels
respectively), L ∈ Rm×n is a low rank matrix representing the
background, S ∈ Rm×n is a sparse matrix representing the fore-
ground, ‖L‖∗ is the nuclear norm of matrix L (i.e.

∑
k |σk(L)|, the

sum of the singular values of L), and ‖S‖1 is the �1 norm of S
seen as a long vector.

Although [1] shows that PCP provides state of the art perfor-
mance in the video background modeling problem, [1] also ac-
knowledges several limitations of the PCP method, those of par-
ticular relevance to the present context being:
• it has a high computational cost (dominated by a partial SVD

computation at each major outer loop);
• it is batch method in that a large number of frames have to be

observed before starting any processing; this has also the side
effect of very high memory requirements, usually in the order
of 1 ∼ 10 giga-bytes (even higher for full HD videos).

2. OBJECTIVE

The objective of this work is to present a real-time, GPU-enabled
/ CUDA-aware (unified memory model) implementation of a
novel incremental PCP algorithm for video background model-
ing on the Jetson TK1 platform.

3. STATE OF THE ART

To the best of our knowledge, within the video background mod-
eling problem, ReProCS [5] along with GRASTA [6] and pROST
[7] are the only PCP-like methods that are considered to be in-
cremental, although some of them have a batch initialization.

ReProCS [5] is not a real-time algorithm, nor can it process
real videos where multiple moving objects enter and leave the
field of view of the camera; moreover [5] also assumes a known
model for the motion of the video’s moving objects, and uses a
batch PCP method in its initialization step, which can be compu-
tationally costly.

GRASTA [6] is presented as an “online” algorithm for low rank
subspace tracking: it uses a reduced number of frames, q � n,
compared to the PCP problem (1), to estimate an initial low rank
sub-space representation of the background and then processes
each frame (which can be spatially sub-sampled) at a time. It
must be emphasized that this procedure is not fully incremen-
tal, using a time sub-sampled version of all the available frames
for initialization. Although GRASTA can estimate and track non-
stationary backgrounds, its initialization step can have a rela-
tively high complexity.

pROST [7] is very similar to the GRASTA algorithm, but in-
stead of using an �1 norm of the singular values to estimate the
low rank sub-space representation of the background it uses an
�p norm (p < 1); experimental results in [7] show that pROST
can outperform GRASTA in the case of dynamic backgrounds.

4. PROPOSED METHOD

Our incremental PCP algorithm, fully described in [8] (Matlab
code and other simulations available in [9]), is a modified version
of the amFastPCP [10], and it is able to to handle incremental
and rank-1 modifications for thin SVD [11, 12, 13].

4.1 amFastPCP algorithm [10]
Instead of solving (1) directly, the amFastPCP algorithm [10]
solves the equivalent alternating minimization

L(j+1) = arg min
L

‖L + S(j) − D‖2
F s.t. rank(L) = r (2)

S(j+1) = arg min
S

‖L(j+1) + S − D‖2
F + λ‖S‖1, (3)

where sub-problem (2) is the one that dominates the computa-
tional complexity ((3) is solved via shrinkage) and can be solved
by computing a partial (with r components) SVD of D − S(j).

4.2 Incremental/rank-1 modifications for thin SVD [11, 12, 13]
Given [D d] = U0Σ0V T

0 , with Σ0 ∈ Rr×r it is possible to effi-
ciently compute thin SVD([D d̂]) = U1Σ1V T

1 with r singular val-
ues. This is accomplished by noting that [D d̂] = [D d] + ceT ,
where c = d̂-d, e is a unitary vector, and using (4) along with
Gram-Schmidt orthonormalization of vectors c and e w.r.t. to U0
and V0 respectively.

[D d̂] = [U0 c]
[
Σ0 0
0T 1

] [
V T

0
eT

]
. (4)

4.3 Incremental PCP Algorithm [8]
Assuming that Lk−1 (low-rank) and Sk−1 (sparse), where Lk−1+
Sk−1 = Dk−1 is a video with k − 1 frames, have been computed
and that we know the partial (thin) SVD of Lk−1 = UrΣrV T

r ,
where Σr ∈ �r×r , then when the next frame is available (video
sequence represented by Dk = [Dk−1 dk]), we note that

Dk − S(0)
k = [Dk−1-Sk−1 dk] = [Lk−1 dk]; (5)

then the thin SVD of (5) can be computed in an incremental fash-
ion: e.g. L(1)k = incrementalSVD(Dk −S(0)

k), and so problems (2)
and (3) can also be solved in an incremental fashion; this is sum-
marized in Algorithm 1.

4.4 Implementation on the Jetson TK1
From our algorithm description (see Algorithm 1) it is clear that
we need to implement the rank-1 incremental and replace SVD
(“incSVD”, “repSVD”) and shrinkage (“shrink”) routines. The lat-
ter is trivially parallelizable, whereas the two formers present

some challenges: although “incSVD” and “repSVD” can be im-
plemented using mainly level 1 BLAS routines (we used the
cuBLAS library for this purpose), some intermediate operations
(such SVD computation of 2 × 2 matrices, operation needed to
cast (4) as a regular singular value decomposition) are more ef-
ficiently computed on a CPU (rather than on a GPU) and thus
careful ordering of the operations must be taken into account.

Finally we mention that using rank equal to one (r = 1 in Algo-
rithm 1) suffices to have a good background estimate as well as
to have good tracking properties (empirically shown in [8, 14]).

Inputs : observed video D ∈ Rm×n, regularization param-
eter λ, number of inner loops iL.

Initialization: L + S = D(:, 1 : k0), initial rank r , [Ur , Σr , Vr] =
partialSVD(L, r)

for k = k0 + 1 : n do
[Uk ,Σk ,Vk] = incSVD(D(:, k),Uk-1,Σk-1,Vk-1)
for j = 1 : iL do

L(:, k) = Uk(:, 1 : r) ∗ Σk ∗ (Vk(end , :)′)
S(:, k) = shrink(D(:, k)− L(:, k), λ)
if j == iL then break
[Uk ,Σk ,Vk] = repSVD(D(:, k), S(:, k), Uk , Σk , Vk)

end
end

Algorithm 1: Incremental PCP algorithm.

5. COMPUTATIONAL RESULTS

We have used three pre-recorded color video sets, nevertheless
these videos are transformed (on the fly) to grayscale before any
processing; the videos are labeled (i) “v640”: a 640 × 480 pixel,
(ii) “v960”: a 960 × 544 pixel, and (iii) “v1920”: a 1920 × 1088
pixel. Our code uses the ffmpeg library for video reading and
simple manipulations (such color space transformations).

All simulations presented here have been run on a Intel i7-
2670QM quad-core (2.2 GHz, 6MB Cache) based laptop and
on the Jetson TK1 board (which has a quad-core ARM Cortex-
A15 processor and a Keppler GPU with 192 CUDA cores). We
differentiate two versions of our code: (i) it does not use any
GPU acceleration (labeled “ANSI-C”), and (ii) it is CUDA aware
and uses the unified memory model (labeled “GPU enabled”).
We also mention that Jetson TK1 board was setup for maximum
performance on the CPU and GPU.

The results listed in Table 1 show that our GPU enabled (uni-
fied memory model) implementation of our incremental PCP al-
gorithm [8] can solve, on the Jetson TK1 platform, the PCP prob-
lem with frame rate throughput of 27.8, 22.6 and 9.4 f.p.s. for
grayscale videos of 640 × 480, 960 × 544 and 1920 × 1088 re-
spectively. Finally we highlight that these frame rates would not
be possible using any other existing PCP algorithms.

Test Sparse video is displayed Sparse video not displayed

video ANSI-C ANSI-C GPU enabled ANSI-C ANSI-C GPU enabled
i7-2670QMQ-core A15 TK1 i7-2670QMQ-core A15 TK1

V640 49.6 11.5 18.3 47.6 15.8 27.8
V960 23.8 8.7 15.9 29.1 11.4 22.6
V1920 7.2 2.2 4.9 7.9 2.9 9.4

Table 1: We present the processing frame rate throughput (average over
at least 900 frames) for our implementation. “ANSI-C” indicates that the code
does not use any GPU acceleration, whereas “GPU enabled” refers to our
CUDA aware (which uses the unified memory model) code.

(a) Frame 160 of the “V1920” test video. (b) Sparse estimation.

Figure 1: Original frame (160) of the full HD “v1920” test video and corre-
sponding sparse approximation computed on the Jetson TK1 board.

6. CONCLUSIONS

• We have presented a PCP algorithm / implementation that
has an extremely low memory footprint, and a computa-
tional complexity that allows, on the Jetson TK1 platform, a
processing frame rate throughput which can be considered
to be real-time for most applications.

• The core operations of the proposed algorithm are mainly
Level 1 BLAS operations, and can take advantage of the
cuBLAS library and the unified memory model.

• Future work will target color video sequences, test on other
CUDA platforms and a thoroughly assessment of the pro-
posed algorithm / implementation.

REFERENCES

[1] T. Bouwmans and E. Zahzah, “Robust PCA via principal
component pursuit: A review for a comparative evaluation
in video surveillance,” Computer Vision and Image Under-
standing, vol. 122, pp. 22–34, 2014.

[2] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust
principal component analysis: Exact recovery of corrupted
low-rank matrices via convex optimization,” in Adv. in Neural
Inf. Proc. Sys. (NIPS) 22, pp. 2080–2088, 2009.

[3] E. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal
component analysis?,” Journal of the ACM, vol. 58, May
2011.

[4] M. Shah, J. Deng, and B. Woodford, “Video background
modeling: recent approaches, issues and our proposed
techniques,” Machine Vision and Apps., pp. 1–15, 2013.

[5] C. Qiu and N. Vaswani, “Automated recursive projected cs
(ReProCS) for real-time video layering,” in Int’l Recognition
(CVPR), 2012.

[6] J. He, L. Balzano, and A. Szlam, “Incremental gradient on
the grassmannian for online foreground and background
separation in subsampled video,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on,
pp. 1568–1575, June 2012.

[7] F. Seidel, C. Hage, and M. Kleinsteuber, “pROST: a
smoothed lp-norm robust online subspace tracking method
for background subtraction in video,” Machine Vision and
Apps., vol. 25, no. 5, pp. 1227–1240, 2014.

[8] P. Rodrı́guez and B. Wohlberg, “Incremental principal com-
ponent pursuit for video background modeling.” submitted,
Springer Journal of Mathematical Imaging and Vision, 2015.

[9] P. Rodrı́guez and B. Wohlberg, “incremental PCP sim-
ulations.” http://sites.google.com/a/istec.net/
prodrig/Home/en/pubs/incpcp.

[10] P. Rodrı́guez and B. Wohlberg, “Fast principal component
pursuit via alternating minimization,” in Proc. of IEEE Int’l.
Conf. on Image Proc. (ICIP), (Australia), pp. 69–73, 2013.

[11] Y. Chahlaoui, K. Gallivan, and P. Van Dooren, “Computa-
tional information retrieval,” in In Computational Information
Retrieval, ch. An Incremental Method for Computing Domi-
nant Singular Spaces, pp. 53–62, SIAM, 2001.

[12] C. Baker, K. Gallivan, and P. V. Dooren, “Low-rank incremen-
tal methods for computing dominant singular subspaces,”
Linear Algebra and Apps., vol. 436, pp. 2866 – 2888, 2012.

[13] M. Brand, “Fast low-rank modifications of the thin singular
value decomposition,” Linear Algebra and its Apps., vol. 415,
no. 1, pp. 20 – 30, 2006.

[14] P. Rodrı́guez and B. Wohlberg, “A matlab implementation
of a fast incremental principal component pursuit algorithm
for video background modeling.” accepted, 2014 IEEE Int’l.
Conf. on Image Proc. (ICIP), 2014.

contact Name

Paul Rodriguez: prodrig@pucp.edu.pe
Poster

P5135

Category: Computer Vision & Machine Vision - CV02

