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We present an algorithm, which  enables to study the chaotic behavior as complex Lyapunov spectrum of SU(2) Yang-Mills fields and the entropy-energy relation utilizing the Kolmogorov-Sinai entropy. It was determined by this numerical algorithm to apply CUDA to calculate the eigenvalues of the monodromy matrix, which is an fxf sparse matrix (f=24N).  
We are using a hybrid block Hessenberg reduction system to compute the required eigenvalues, that makes us capable to achieve 2-3 times higher performance than the CPU only version. 

Chaotic behaviour of the lattice Yang-Mills on CUDA 

Householder vector, where 
vector x is the kth column 
of block Bk with the first k 
entries set to 0 

 

Relation between Wilson action and lattice Hamiltonian 

Consider the path is a closed contour i. e. Wilson loop, it is invariant under gauge 
changes and independent of the starting point. The product of such group elements 
along the closed line is a gauge covariant quantity, the trace over such products are 
invariant. Because the           can be series expansion by      : 

up to           correction, where                   . 

The Wilson action should be sum over all elementary squares of lattice                            . 
The action function of the gauge theory on lattice is written over plaquette sum to use the 
nearest neighbor pairs. The coupling on space-like and time-like plaquettes are no longer 
equal in the action: 

Therefore the homogenous non-Abelian gauge action: 

The Scaled Hamiltonian was derived in the next form: 

The time like plaquette is denoted by         and space like         . 

Results, conclusions 
For our testing we have used the following system. As for the Hessenberg block we have set the size to be 32 columns. For these tests we have used lattices with 
N=2,3,4,5,6, which gives us a 192x192, 648x648, 1536x1536, 3000x3000 and a 5184x5184 matrix resoectively. Hence our blocks are 192, 648, 1536, 3000 and 5184 
long and 32 wide. 

Test system 
CPU GPU Memory OS 
Core i7 4710 @2.5 GHz GTX 980M 4 GB 24 GB Windows 8.1 x64 

Hessenberg reduction 
The most computing intensive part of the eigenvalue problem is to transform our initial matrix into its Hessenberg form. To achieve this the Block Hessenberg Algorithm is 
used. In this instead of taking the whole matrix as the input of the transformation process we devide it into smaller blocks. We take these blocks and calculate the 
Householder vector for each column in that block and with it update the consecutive columns. When finished we use the accumulated Householder transformations to 
update the rest of the whole matrix. We repeat this until we update all the blocks. 

This way with the accumulated Householder transformations in overall less matrix multiplications will be used compared to the original Hessenberg Algorithm in which 
case we always have to update every column with the calculated Householder vector. 

Hybrid Hessenberg reduction 
With the hybrid implementation we extend the algorithm to the GPU as much as reasonably possible. The GPU will need a high amount of data to be able to achieve 
high parallelism and thus high performance, so the low on data parts of the calculation are kept on the CPU while the intensive matrix multiplications are feeded to the 
GPU. 

Before commencing any calculations we upload the matrix into the GPU’s memory,, after that we follow the next steps for the kth block: 

For every column (i) in the block: 

1. Compute the Householder vector (v), the ith column of V (CPU) 

2. Update T and Y matrices (CPU) [eq. 1,2] 

3. Update the next column (CPU) [eq. 3,4] 

After updating the block: 

4. Update the rest of the matrix with V,Y,T (GPU) [eq. 5,6] 

5. Copy over the next block to the CPU as it has been updated on the GPU 

6. Continue the reduction 

Update formula for one column of a block 

Update formula for the rest of the matrix 
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Compact-WY representation of the k Householder transformations 

Lattice EOMs 

The         means the Lagrange multipliers and the symmetry SU(N) is fulfilled by the next 
expressions:                             (unitarity) and                             (orthogonality). 

We will denote single link            in time   with      . 

Implicit-Explicit-Endpoint Algorithm 

Determine: 

i. Obtain    from orthogonality: 

ii. Obtain c from unitarity: 

SU(2) Hamiltonian 

We will denote the single link         with    . 

Quaternion representation (for one link) 

The          is a complement link variable constructed of products of         -s along 
all link triples which close with given link an elementary plaquette. The canoni-
cal variable:                        . The non-Abelian gauge field is connected to the 
plaquette product: 

Chaos 

The non-Abelian gauge field theory was introduced to understand the strong interaction of elementary particles. The homogenous Yang-Mills equation 
contains the quadratic part of gauge field tensor. 

where          are space-time coordinates, the symmetry generators are labeled by                                   and     is the bare gauge cou-
pling constant and                are the structure constants of the continuous Lie group. The generators of this group fulfill the following relation-
ship                                              . The equation of motion can be expressed by covariant derivative in the adjoint representation: 

The          form is a component of an antisymmetric gauge field tensor in Minkowski space: 

The real time differential equations are solved for basic variables, while the total energy is constrained value. In the 3 dimensional regular lattice with spac-
ing a the basic variables are group elements, which related to the vector potential:                                            , where      is a group generator. For SU(2) these 
are given by the Pauli matrices                             . The indices x,i denotes the link of the lattice starting at the 3 dimensional position x and pointing into the i-
th direction. 

The Hamiltonian equation of motion is solved with dt discrete time steps. This 
algorithm satisfies the Gauss law and the constraint of total energy. 

The Lyapunov spectrum      is expressed in terms of the monodromy matrix’s eigenvalues      : 

where the           ’s are the solutions of the characteristic equation: 

at a given time t. Here M is the linear stability matrix, and f is the number of degrees of freedom. 

Conservative dynamics are fulfilling Liouville’s theorem: 

The discrete definition of the Lyapunov spectrum: 

where    ’s are subsequent times along an evolutionary path of the gauge field configurations. 

The Kolmogorov-Sinai entropy by using Perin’s formula: 

             being 1 for positive arguments and 0 otherwise. 

The dimension of        is a rate (1/time) estimating  the entropy: 

The monodromy matrix: The elements are: 

They are providing information about the stability of trajectories in the neighborhood of any point of an orbit in the (U,P) phase space. A small perturbation (      ,       ) evolves in time 
governed by the monodromy matrix M. The eigenvalues of this matrix can be classified as follows: for real and positive eigenvalues, neighboring trajectories part exponentially and 
the motion is unstable. In the limit of large time we obtain the Lyapunov components from these eigenvalues. The imaginary parts of the complex eigenvalues describe oscillatory 
frequencies of perturbations. 

The nonlinearity of the Yang-Mills fields is described by the chaotic theory. Instead of the classical rescaling solution we apply the monodromy matrix method, 
which can describe the gauge field evolution, in this case the short– and long time behaviour. The full complex Lyapunov spectrum of the SU(2) Yang-Mills fields 
can be determined on a three dimensional lattice from classical dynamics using eigenvalues of the monodromy matrix. The question of ergodization is 
addressed via the Kolmogorov-Sinai entropy. 1. Comparing the runtime of the CPU to the GPU, the GPU gives a reasonable 3 fold performance gain over the CPU variant. 

2. The numerical results fulfill the physical principle, the constraint value of the physical quantity remains constant during the time evolution of the equation of mo-
tion. 

3. The positive real part of Lyapunov Spectrum justifies the existence of the chaotic motion in the Yang-Mills fields. Kolmogorov-Sinai entropy is obtained from the 
evolution eigenvalues of the monodromy matrix as functions of the scaled energy. These results gives good approximation for an ideal gas (SlogE). This numerical 
computation can be extrapolated to larger sizes by parallel algorithms. 

4. The behavior of the GPU makes it possible to solve the more complicated systems for example Yang-Mills-Higgs fields. High precision computations in thermo dy-
namical limit are mandatory, where the GPUs high double precision performance is needed. 

Goals: 

1. Due to the high memory requirement of the algorithm the current implementation cannot handle very big lattices. It should be considered how to improve the 
implementation to allow us to partition the matrix for multiplication, so even more dense lattices could be used. 

2. It should be considered how to change the matrix structure to exclude the non valuable elements, thus decreasing the size of the matrix. 

Comparing the CPU and GPU runtimes we 
can see that the GPU is capable to achieve 
a 3 times faster processing speed, than 
the CPU. Due to resource limitations the 
evaluation was done on lattice size N= 
2,3,4,5,6. It is visible, that on lower sizes 
the GPU cannot bring any speed up thanks 
to the required memory copies. 

Homogeneous Yang-Mills Fields 

Lattice Yang-Mills Fields Theory 

The positive real part of Lyapunov Spectrum.  The Kolmogorov-Sinai entropy. 
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