
Real-timeFullHDTracking-Learning-Detection
ona2-SMXGPU

Jorge Atala1, Carlos Bederián2, Andrés Bordese2, Facundo Gaich2, Gastón Ingaramo2,
Julia Medina2, Maximiliano Rossetti1, Jorge Sánchez2, Matías Tealdi2 and Nicolás Wolovick2

1INVAP S.E., Argentina. 2FaMAF, Universidad Nacional de Córdoba, Argentina.

Introduction
Object tracking is an important problem in computer vision
and motion analysis. It can be defined as the estimation of
the observed location (and scale) of a given object as it moves
relative to the camera. This is a very challenging problem since
one has to deal with changes in the object appearance, presence
of background clutter, out-of-camera motions, etc.

TLD Overview
The TLD algorithm proposed by Kalal et al. [2] relies on the
interplay between a reliable and fast appearance-based tracker
[1] and a robust but slow multi-stage (cascaded) detector. It
has shown great tracking performance in a variety of scenar-
ios, although so far its application has been restricted to low-
resolution imagery due to its complexity.

LK-MedianFlow
Tracker

Cascaded
Detector

Learningrestart

tracker
hypotesis

(multiple)
detections

training
data

Fig. 1: An overview of the TLD algorithm.

Fig. 1 schematically depicts the main blocks of the algorithm.

• LK-MedianFlow Tracker [1]: Fast estimation, but not ro-
bust against out-of-camera motions and abrupt changes
in visual appearance.

• Cascaded Detector : Slow but robust sliding window de-
tector which corrects the tracker if necessary.

• Learning : Responsible of training data generation, de-
tector error estimation and model updates.

Motivation
Our initial parallel and vectorized CPU implementation re-
quired downsampling the 1080p input video stream to a quar-
ter of the resolution in order to perform above 30 frames per
second. Other open-source TLD implementations performed
similarly.
The parallelizability of a large portion of the TLD pipeline,
combined with processor usage and power constraints on our
target platform, prompted research into a CUDA port running
on a mid-range GPU.

Approach
The first stage of our work consisted in offloading the detector
module to the GPU. As the work showed promise, producing
a heterogeneous CPU-GPU implementation that exceeded 30
frames per second without input downsampling, the rest of
the TLD algorithm was then ported to CUDA in order to free
up CPU resources for other processes running in the target
platform.
Development was kickstarted through rapid prototyping using
the Thrust template library. Thrust was then replaced wher-
ever possible by the higher performing CUB library, while crit-
ical sections of the pipeline, obtained through profiling, were
replaced by optimized kernels which target Kepler and newer
GPU architectures.
The port aims to reproduce CPU implementation output in an
exact fashion. While this limits optimization opportunities, it
also improved porting productivity by ensuring correctness.

Results

0

. 20

. 40

. 60

. 80

. 100

. 120

Xeon E3−1275v3 Quadro K2000 Tesla K40

Fr
am

es
.p

er
.se

co
nd

Seq.1
Seq.2
Seq.3
Seq.4

Fig. 2: Tracking performance on four 1080p video sequences.

Fig. 2 shows the performance of our TLD implementations on
a set of 1080p video sequence samples with varying detection
and tracking requirements. The tracker performs acceptably
on the 384-core Quadro K2000 GPU of our target platform.
Results on a high-end Tesla K40 GPU are also provided for
comparison.

Future work
We aim to continue improving our implementation through
more aggressive optimizations that drift from the original CPU
code, in order to improve scaling on faster GPUs and also to
be able to run TLD on embedded systems based on Tegra K1
or X1 SoCs.

References
[1] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Forward-

backward error: Automatic detection of tracking failures. In 20th
International Conference on Pattern Recognition, ICPR 2010, Istan-
bul, Turkey, 23-26 August 2010, pages 2756–2759, 2010.

[2] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-
learning-detection. IEEE Trans. Pattern Anal. Mach. Intell.,
34(7):1409–1422, 2012.

contact Name 

Carlos S. 	Bederian: bc@famaf.unc.edu.ar
Poster 

P5141

Category: Computer Vision & Machine Vision - CV04


