Multi-core GPU – Fast parallel SAR image generation Mahesh Khadtare¹, Pragati Dharmale², Prakalp Somwanshi³ & C Bhattacharya⁴

Abstract

This poster presents a design for parallel processing of synthetic aperture radar (SAR) data using multi-core Graphics Processing Units (GP-GPUs). In this design a two-dimensional image is reconstructed from received echo pulses and their corresponding response values. Then the comparative performance of proposed parallel algorithm implementation is tabulated using different set of nvidia GPUs i.e. GT, Tesla and Fermi. Analyzing experimentation results on image of various size 1,024 x 1,024 pixels to 4,096 x 4,096 pixels led us to the conclusion that nvidia Fermi S2050 have maximum performance throughput.

Introduction

Generating images from Synthetic aperture radar (SAR) video's raw data require complex computations that is tabulated in data sample for RADARSAT-1[1].

In SAR system, fundamental principle is based on matching of received(Rx) signal phase with the transmitted(Tx) signal phase at a stable frequency of transmission. Fast Fourier Transform (FFT) calculation is used to calculate phase of received and transmitted signal.

The modified algorithm that is presented in the paper [2] is implemented by dividing the impulse response of Rx/Tx signal into several blocks of equal length and then computing FFT on each block. It help to process the dimension of range and azimuth in parallel.

Since GP-GPU has huge computational capability which process data in parallel, modified SAR image generation on GPU is implemented. New proposed parallel algorithm helped to achieve faster execution speed for range and azimuth dimension.

Algorithm And Method

1 – I2IT, Pune, IN; 2 – SNHU, NH, US; 3 – CRL, Pune, IN; 4 – DIAT, Pune, IN

TECHNOLOGY CONFERENCE

CPU / GPU	Core Details	Time(sec)	Speedu p	
AMD Athlon X2 Dual Core	1	45.337	1x	
Fx1800	64	19.50	2.32x	
GeForce GT 525M	96	4.150	10.92x	
Tesla GeForce GTX 275	192	1.421	31.90x	
Fermi S2050 (Multi GPU)	4x448	0.321	141.21x	

CPU / GPU	Core Details	Time(sec)	Speedup	A
AMD Athlon X2 Dual Core	1	50.065	1x	60
Fx1800	64	36.60	1.368x	40
GeForce GT 525M	96	8.501	5.884x	30 20 10
Tesla GeForce GTX 275	192	3.725	13.44x	0 AM
Fermi S2050 (Multi GPU)	4x448	0.981	51.01x	Athlor Dual (

CPU / GPU	Core Details	Time(sec)	Speedup	
AMD Athlon X2 Dual Core	1	95.00	1x	100
Fx1800	64	36.60	2.6x	60
GeForce GT 525M	96	9.23	10.29x	40
Tesla GeForce GTX 275	192	4.4563	21.31x	
Fermi S2050 (Multi GPU)	4x448	1.280	74.21x	Athlor Dual

Result - SAR Image Generation

								19.49 A			
1024 azimuth cells	200										
	400										
	600	e de la come									
	800										
	1000										
	1200										
	1400										
	1600										1 4 1 1 2 4 1 2 4 1
	1800										1
	2000					100				P27	
		200	400	600	800	1000	1200	1400	1600	1800	2000

References

Artech House, Boston, London, Jan 2005.

Germany.

http://developer.nvidia.com/object/cuda.html. APSAR, 2011