
Real­Time GPU Based Video Segmentation with Depth Information
Nilangshu Bidyanta, Ali Akoglu

1. Abstract
In the context of video segmentation with depth sensor, prior work [1] maps the

Metropolis algorithm, a simulated annealing based segmentation routine, onto an
Nvidia Graphics Processing Unit (GPU) and achieves real­time performance for
320x256 video sequences. However that work utilizes depth information in a very
limited manner. Our work extends the GPU­based method to use depth information
during segmentation and shows the improved segmentation quality over the prior
work.

We introduce a scaling factor for amplifying the interaction strength between
two spatially neighboring pixels and increasing the clarity of borderlines. This allows
us to reduce the number of required Metropolis iterations by over 50% with the
drawback of over­segmentation. We evaluate two design choices to overcome this
problem.

First, we pre­process the frames with Bilateral filter instead of Gaussian filter,
and show its effectiveness in terms of reducing the difference between similar colors.
Second, we incorporate depth information into the perceived color difference
calculations between two pixels, and show that the interaction strengths between
neighboring pixels can be more accurately modeled by incorporating depth
information. Both approaches help improve the quality of the segmentation, and the
reduction in Metropolis iterations helps improve the throughout from 29 fps to 34 fps
for 320x256 video sequences. A link to the video outputs have been provided in
references [2].

6. References
[1] A. Abramov, K. Pauwels, J. Papon, F. Worgotter, B. Dellen, "Depth­ supported real­
time video segmentation with the Kinect," wacv, pp.457­464, 2012 IEEE Workshop on
the Applications of Computer Vision, 2012
[2] http://www2.engr.arizona.edu/~rcl/huawei/tracking/links.htm

2. Problem Statement
• Image Segmentation is the process of partitioning a group of pixels having common
characteristics into multiple sets, each set usually representing whole objects.

• Traditionally, segmentation has been carried out based only on visual cues by the
color information conveyed through the pixels. This has a few drawbacks as in the
scene below where a white paper plate and white kettle, placed in front of a while
wall, are erroneously segmented as parts of the wall as shown in Fig. 1(a) & 1(b).

(a) Raw Frame (b) Incorrectly segmented frame

(c) Raw Frame (d) Correctly segmented frame using
depth

• Using a depth sensor, it would be possible to detect objects distinctly even when
similarly colored and occluded as shown in Fig. 1(c) & 1(d).

• However, processing the sheer volume of pixel and depth data generated,
especially in video sequences, is a bottleneck, unsuitable for many applications with
real­time requirements.

• In this work, we address the problem of achieving high quality video segmentation in
real­time.

5. Optimization strategies
• A serial and GPU based version of the
algorithm described earlier [1], were
implemented. A comparison of their running
times for one frame is listed on the table to
the left.

• Applying the algorithm as is to each frame
of the video achieves a throughput of 18.6
frames per second (fps) which is not good
enough for most real­time applications.

Task
Metropolis Core 3.199
Auxiliary Tasks 0.006

Refinement 0.035
3.230

Speed­up ­­­ 60x

Serial* CPU­GPU

0.054
0.035
0.006
0.013

Execution Times (seconds)

Total

(a) Reduced Iterations ­ Oversegmentation (b) Scaling factor ­ Corrected output

• To improve throughput, the number of computations per frame can be reduced by
decreasing the number of Metropolis iterations per frame.

5a. Reduction in Metropolis iterations

• This, however, leads to an oversegmented frame (Fig. 5(a)). Over­segmentation can
be interpreted as an outcome of weak interaction strengths between pairs of pixels.
Introducing a scaling factor to increase the strengths helps to reduce over­
segmentation. The frame rate achieved using this technique is 44 fps with a slight
deterioration in segmentation quality as shown in Fig. 5(b).

• Bilateral filtering frames before processing
is a good way of removing artificial
boundaries introduced by lighting variations
and also due to the reduction in metropolis
iterations.

• A bilateral filter is able to get rid of the
vertical dark striations from the door which
would otherwise cause poor segmentation.

• Since this filter is computationally intensive, throughput reduces to 34 fps. But
quality of segmentation improves over the original segmentation flow as
shown in Fig 6(d) and 6(e).

(a) Raw Frame (b) Gaussian (c) Bilateral

5b. Bilateral filter for noise removal

(c) Gaussian filtered frame (d) Bilateral filtered frame

(a) Original Flow (b) Depth Enhanced
Fig. 7

• An alternative to using bilateral filtering would be to use depth measurements in the
calculation of coupling matrices. The motivation is to eliminate lighting variation in the
2D planes parallel and perpendicular to the focal plane of the camera.

• For a given color difference (∆C) and a depth difference (∆D), we define two
thresholds CT and DT respectively. We come up with the following six cases
depending on the values of the differences.

Color Difference Definition Depth Difference Definition

Same ∆C = 0

Slightly Different 0 < ∆C ≤ CT

Different ∆C > CT

∆D = 0

0 < ∆D ≤ DT

∆D > DT

Same

Slightly Different

Different

5c. Depth enhanced coupling matrix

• Whenever the cases below are encountered, the interaction strengths of the
participating pixels are set to the maximum possible value, thereby classifying them in
the same segment.
• Same depth, same color
• Same depth, slightly different colors
• Slightly different depths, same colors
• Slightly different depths, slightly different colors

• This approach gives the best quality of segmentation with a throughput of 34
fps. Below is a comparison of two similar scenes with the original segmentation flow
output using depth (Fig. 7(a)) and our depth enhanced coupling matrix segmentation
flow output (Fig. 7(b)). The video showing the depth enhanced segmentation
output can be found at [2].

3. Technology
• Recent technological advances make it possible to realize a real­time video
segmentation system. Availability of capable but inexpensive depth sensors such as
the Microsoft Kinect and ASUS Xtion Pro provide both color and depth information via
an RGB camera and an infrared (IR) camera respectively.

• The computational power provided by the General Purpose Graphics Processing
Units (GPGPUs) are suited for data intensive applications with a high degree of
inherent parallelism.

• For this project, we integrate NVIDIA's GTX480 & the Microsoft Kinect with a Xeon
x5675 CPU to implement our real­time video segmentation system.

3. Segmentation algorithm on the GPU
• The core segmentation algorithm [1] is based on the Metropolis
procedure. The pixels of a frame form a system similar to
particles in a crystal lattice. The lowest energy state of such a
system corresponds to a fully segmented frame.

• This procedure is used to process Fig. 4(a) to give 4(b) and
Fig. 4(e) to give Fig. 4(f). The pixels of a frame form a system
similar to particles in a crystal lattice.

• The algorithm benefits from a GPU since each pixel's energy is
based on interactions with neighboring pixels (Fig. 2). These interactions are
independent from one another and therefore can be carried out in parallel.
Interaction strengths of pixels at different depths are explicitly weakened.

Fig. 2

• Fig. 3 shows the output
from an RGB camera (a)
and an IR camera (b). The
depth values in the IR
image have been converted
to grayscale values. Larger
the distance from the IR
sensor, higher (whiter) the
grayscale output.

4. Segmentation flow

(a) Raw Frame (b) Spin Matrix (c) Boundary Detection

(d) Intermediate
Segmentation

(e) Reinitialized Spin Matrix (f) Final Segmentation

nbidyanta@email.arizona.edu, akoglu@email.arizona.edu

Fig. 6

Fig. 1

Fig. 5

Fig. 4

Fig. 3(b)Fig. 3(a)

*The serial implementation was realized on a
Xeon x5675 CPU

contact Name 

Nilangshu Bidyanta: nbidyanta@email.arizona.edu
Poster 

P5146

Category: Video & Image Processing - Vi03


