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Abstract

We consider the inverse modeling problem of recovering
nanostructures from X-ray scattering data obtained through
experiments at synchrotrons. This has been a primary bottleneck
problem in such data analysis. X-ray scattering based extraction of
structural information from material samples is an important tool for
the characterization of macromolecules and nano-particle systems
applicable to numerous applications such as design of energy-relevant
nano-devices. We exploit massive parallelism available in clusters of
graphics processors to gain efficiency in the reconstruction process. To
solve this numerical optimization problem, here we show the
application of the stochastic algorithms of Particle Swarm Optimization
(PSO) in a massively parallel fashion. We develop high-performance
codes for various flavors of the PSO class of algorithms and analyze
their performance with respect to the application at hand. We also
briefly show the use of two other optimization methods as solutions.

X-Ray Scattering
X-ray scattering comes in various flavors, and here we focus on data

obtained using methods from the class of grazing incidence X-ray
scattering, such as GISAXS (small-angle) and GIWAXS (wide-angle).
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Inverse Modeling

The process of recovering physical properties using experimentally
measured data is commonly known as inverse modeling and appears in
numerous applications. This generally involves minimization of an
objective function value iteratively until convergence w.r.t. a set of
parameters to be "fitted", or

recovered. In our case, this

function is a computationally

intensive forward simulation

of the scattering patterns, forward
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Particle Swarm Optimization

The particle swarm optimization (PSO) method is a stochastic process
involving large number of "agents" which move around and explore the
parameter search space. For agent i, its ""velocity" is determined as:

inertia coefficient force coefficients
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The coefficients, inertia and force, determine how viscous is the search
space, and how attractive are the forces towards local and global best
found positions, respectively. They affect convergence as follows:
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Experiments

Consider two
models to fit:

1. Cylinder

(2 parameters)

2. Truncated
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Inverse Modeling with PSO

The results for convergence for the two models are shown below. These
are shown with respect to varying number of agents, and varying volume
of the search space. Black spots represent those configurations which
failed to converge in one trial.
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What is better for convergence: fewer
agents run for a long time, or, a larger
number of agents run for short time?
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The plots on the right demonstrate the
answer to this question. Each run was
performed on a total of 100 GPU nodes
in parallel. There are three main
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Conclusions

-or the problem of recovering nanostructures from X-ray scattering
patterns, the method of particle swarm optimization has proven to be
nighly effective. The convergence maps for two other sophisticated
methods, a quasi-Newton method (LMVM) and a derivative-free trust-
region based mothod (Pounders), are shown below w.r.t. initial guess.
Although both methods perform well with the first model, they, LMVM
in particular, are less effective for the second model. Compared to
these, PSO has an additional advantage of not requiring an initial guess.
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