

Parallel Map Projection of Vector-based Big Spatial Data

Coupling Cloud Computing with Graphics Processing Units

Wenwu Tang, Wenpeng Feng

Center for Applied GIScience and Department of Geography and Earth Sciences University of North Carolina at Charlotte, Charlotte NC, 28223 Email: WenwuTang; wfeng5@uncc.edu

Objective & Study Area

- ☐ Objective: Develop a parallel spatial computing framework for the map projection of **vector-based big spatial data**
- ☐ Study area: North Carolina, USA
- ☐ Data:
 - ❖Bare earth LiDAR (Light Detection And Ranging)
 - **❖** Total 230 **Gigabytes**
 - ❖ 13,596 sub-datasets (in file format)

Workflow

The workflow with respect to interactions between layers and the specific functionality of each layer

☐ Integration of three functionality layers: **High-performance computing**, **cloud-based virtual machine**, **and web-based GIS portal**

Framework

☐ The advantage of the layered architecture: Blending capabilities of GPU-enabled high-performance computing, cloud computing, and Internet GIS

Web GIS portal

Task configuration

Job monitoring

- ☐ Specify map projection
- ☐ Configure partitioning strategies
- ☐ Determine number of tasks
- ☐ Submit jobs
- ☐ Query status of jobs
- ☐ Download results

Methodology

☐ GPU-enabled parallel **map projection algorithms** were developed based on CUDA platform.

GPU-accelerated high-performance computing

☐ Heterogeneous parallel computing requires cooperation between CPUs and GPUs.

Results

#GPUs	Computing Time (with transfer time)			Computing Time (without transfer time)		
	Load Balancing		Time	Load Balancing		Time
	Before	After	difference	Before	After	difference
20	30.72	27.11	3.61	4.56	3.78	0.79
30	19.64	19.03	0.61	2.97	2.58	0.39
40	15.32	15.28	0.03	2.27	2.02	0.25
50	12.51	12.26	0.25	1.96	1.64	0.33
60	10.91	10.78	0.13	1.70	1.42	0.29

Results of computing time for parallel map projection using multiple GPUs (time unit: seconds; the entire North Carolina LiDAR dataset was used).

Conclusions

- ☐ The transforming time of entire LiDAR dataset is decreased from 3 hours to 11 seconds.
- ☐ The larger the size of input data (i.e., problem size), the higher speed up that we gain in terms of pure computing time for map projection
- ☐ The use of load balancing leads to increase in acceleration factors.
- ☐ This integrative framework provides substantial support for best leveraging each component that complements to each other with respect to the map projection of big spatial data.

Acknowledgement

- ☐ CAGIS (Center for Applied Geographic Information Science) ☐ UNCC, URC (University of North Carolina, Charlotte,
- University Research Computing)

 University Research Computing)

