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Abstract

We propose a new method derived from DACCER (Distributed
Assessment of the Closeness Centrality Ranking)[1]: the

modified DACCER (MDACCER), for assessing traditional
Closeness Centrality ranking.

MDACCER presents a relaxation that allows it to take
advantage of massively parallel environment, like General
Purpose Graphics Processing Units (GPGPUs).

DACCER assesses the node centrality by estabilishing a
radius h for a limited neighborhood around each node. When
h=2, it presents a good correlation level to Closeness
Centrality at a lower cost besides bheing easier to be
parallelized. Despite all the advantages, DACCER presents
some diculties in GPGPUs programming model thatincreases
computational cost at this particular environment [2].

In order to accomodate DACCER to that sort of environment,
we proposed MDACCER. Experimental results demonstrate
that MDACCER is as simple and efficient as DACCER to
assess Closeness centrality ranking in complex networks and
moreover does not have the same bottlenecks in GPGPUs
computing, about memory usage and time complexity. We
performed MDACCER for synthetically generated Barabasi-
Albert (BA) networks[3], and results indicate MADCCER
correlates Closeness centrality ranking almost as well as
DACCER does, atlower computational costs.

Centrality of Complex Networks

A complex network is defined as a graph whose topological features are non-
trivial, i.e., there are conectivity patterns (spatial and temporal) between its 100%
elements which are neither purely regular nor purely random. Nowadays,
Complex networks include most social, biological and technological

networks [5].
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plementatlon

mented MDACCER on CUDA 5.5 along with the Thrust
parallel API [4] to implement the device/host arrays as well to
perform some parallel primitives: reduce, exclusive-scan and
sequence.

The most underlying structere of the application is the
Compacted Adjacency List (CAL) [5]. There are three lists of that
type: the one which stores the graph, the one which stores the
adjacencies at the k-layer and the one which stores the
adjacencies at the k-1 layer.

The algorithm starts with the reading of the graph and the radius.
After that, it creates the CAL for the computation of the volume
(centrality measure of the node). It iterates over the
neighborhood of the vertices until it gets the input radius. At
every iteration, It allocates a thread to each vertex to compute its
correspondent volume. After, the volume computation, the
algorithm output a ranking ordered of highest to lowest.

Size O(V) Compacted Adjancy List

Indexes = I 0 1 V-2 \V-l

Adj(v-2) | Adj(v-1)
fbeg] | fbegs | V@

Pointers to the beginning

of the adjancies.

Adj(V-2)  Adj(V-1)

\ /

Size O(E)

Correlation Degree for h=2

MDACCER vs CLOSENESS CENTRALITY

Laboratorio
Nacional de
Computacao
Cientifica

QCNPq

Conselho Mndarm! de Desenwv chvimento
Clentifico nologico

Centra Nacional de
Processamento . de
Alta Desempenho

Rafael Nardes Moreira
rafaelnm@Incc.br

Daniel N. R. da Silva
dramos@Incc.br

Results

speedup - the higher the better time - the lower the better

The experiment was carried out on a Linux cluster with an infini-band network
channel and 4 nodes. Each node has 2 Intel® Xeon® CPU E5-2660 0 @
2.20GHZ (8 cores per processor), 64GB DDR3 DIMMs memory and a Nvidia®
101 - Tesla k20 GPU. There were three types of applications for the experiments:
serial, MPI/OpenMP and hybrid between CPU and GPU. The serial one was SIS
compiled with gcc version 4.4.7. The MPI/OpenMP one was compiled with the

following products: 1) Portland Group Compiler Collection (pgcc) 14.2 that
supports OpenMP 3.0 and OpenACC 2.0 standards; 2) MVAPICH 2.2.0, that
fully supports MPI 2.0 standard and executed with 32 processes. The hybrid 102 L
one was compiled with NVCC (Nvidia Compiler Driver) version 5.5.0.

100 - The charts are related to the elapsed times of the applications, i.e., read +
computation + write.
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Differences between MDACCER and DACCER

value given by Rank-Biased Overlap [8]
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CORRELATION

The study of dynamics of such networks can be accomplished through | 2

models, one of which is the Barabasi-Albert one [3 ].

One of the characteristics assessed in the Network Theory is the centrality of
the nodes. In broad terms, it tells the relative importance of them in the
network. In this study, many approaches have been used as the Closeness 80%

Centrality and Betweenness Centrality [T].

Those approaches, called global ones, need to have a full knowledge of the
net, which makes them computationally expensive. Beside that, it is very 100%
difficult to parallelize them .Those two factors have been leading researchers 00%
to look into local and parallelizable methodologies, i.e., the ones that do not
need to have complete knowledge of the net as the DACCER one.
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