
ABSTRACT _

\

MOTIVATION _

RSHA-1 _

Figure 1: RSHA-1 framework

CUDA Implementation of RSHA-1 and Code Optimization
Neha Kishore1, Dr. Bhanu Kapoor2

1Chitkara University, Himachal Pradesh, India; 2Mimasic, Dallas, TX USA
neha.kishore@chitkarauniversity.edu.in; bkapoor@mimasic.com;

ABSTRACT _ ABSTRACT _ ABSTRACT _

Algorithm 1: RSHA-1 Algorithm

SECURITY MEASURES _

PERFORMANCE ANALYSIS _

EXPERIMENTAL RESULTS _

Figure 3: Execution time of SHA-1 and RSHA-1 for different file sizes

CODE OPTIMIZATION _
PINNED MEMORY:

Figure 4: Performance Comparison after code optimization

FUTURE WORK _

REFERENCES _

\

A new algorithm RSHA-1 is proposed which serves the same purpose as SHA-1
Cryptographic Hash Algorithm with less computational complexity and delay by
using the power of GPU’s. The target is not only to reduce the delay but also to
lead green computing by saving power consumption.
The algorithm implements recursive tree hash to break the chain dependencies
of the standard hash function to enable parallel computation of hash code of
heavy files. We discuss here the theoretical foundation for the work and the
performance implications. The result analysis of the algorithm has been done
by implementing and optimizing it using CUDA on GPU’s and comparing the
results with standard SHA-1, implementation in OpenMP API.

1. Append padding bits to the original message if required.

2. Calculate the length of the original message and append it to the
end of the message

3.Split new message space M into blocks M(i) of 512 bits each.

4. Cut out the dependences among hash values Hi; setting H0
(IV) for all blocks M(i)

5. Calculate H(M(i)) of 160 bits for each M(i) to generate H1,…,
Hi,….,Hp;

6. Combine H1,…, Hi,….,Hp to form a single message.

7. Use recursive hash as similar to H(M(i)) to produce an output hash
value with 160-bits if required.

Conventional Cryptographic hash algorithms like MD5, SHA-1, SHA-2 [1] are
mainly serially implemented and are used in various applications like Digital
Signatures, Forensics, SSL protocol, authentication etc. The computation of
hash value requires lot of execution time.
In forensics, the hash process is normally used during acquisition of the
evidence, during verification of the forensic image, and again at the end of the
examination to ensure the integrity of the data and forensic processing. These
algorithms are also currently used to validate the integrity of downloaded files
in information technology applications.
The amount of data often exceeds 1 terabyte and it takes too much time to
calculate the hash code for such heavy files.
So the power of multiprocessors on a GPU machine can be exploited to
parallelize the hashing algorithms which can lead to its fast and secure
implementation.

[1] Stalling W., Cryptography and Network Security, 3rd ed., New Jersey: Pearson Education
International, 2003.
[2] N. Kishore and B. Kapoor, "An efficient parallel algorithm for hash computation in security
and forensics applications," in Advance Computing Conference (IACC), 2014 IEEE
International, 2014, pp. 873-877.

The main focus now is to more optimize the implementation of RSHA-1 on multi-core
machines on GPUs to explore the power of GPUs. Undoubtedly the RSHA-1 is meant
for large data flows. More speedups can be achieved on large chunks of data on GPU
machines. The future course of work will include the usage of Shared Memory
concept as well so as to have more control on memory related pitfalls. It would also
include analyzing the collision resistance of the algorithm in adverse conditions.

Most of the computation in SHA-1 hashing algorithm takes place in its
compression function which accounts for the majority of the time
consumption by the algorithm. To speed up the whole process, a new
algorithm Redesigned SHA-1(RSHA-1)[2] is proposed which is based upon
recursive framework in which the standard SHA-1 algorithm is tried to
parallelize. In this the chain dependency in the function is removed by
recursively calling the compression function with a single Initialization Vector
(IV) i.e. H0 and generating the hash value.
RSHA-1’s compression function is data parallel. In order to gain the maximum
degree of concurrency, multiple compression functions can be executed in
parallel on different processing units simultaneously. The design of the
algorithm is based on SIMD architecture performing both recursive and data
decomposition in order to make the optimum use of resources. The structure
of RSHA-1 framework is illustrated in “Fig. 1” and described in Algorithm 1.

The thread size and block size in the code was decided on the basis of the file size. The
experiment was executed on varied file sizes: random files of sizes 512KB, 1MB, 2MB, 4MB
and 8MB were taken for the same. It was observed that simple implementation of code on
CUDA when compared with implementation on OpenMP API (on the same CPU) and with
standard SHA-1 could not give good results as shown in graph below.

In RSHA-1 each message block has the same initial vector H0 to generate hash
value. So the calculation of H(M(i)) for each M(i) is fully parallelized without
dependences, and then reducing Hi using H(Hi) as similar to H(M(i)) to produce an
output hash value.

- Pre-Image Resistance: Given a hash h, it is infeasible to generate M such that
H(M)=h.
- Weak Collision resistance: Given M, it is hard to find another message, M’, such
that H(M)=H(M’). Functions that lack these properties are vulnerable to pre-image
and second-pre-image attacks.
- Collision resistance: It is not easy to find two different messages, M and M’ with
the same hash value, such that H(M) = H(M’).
- Partial Pre-Image Resistance
- Non- Correlation Resistance
The RSHA-1 has Avalanche Effect and satisfies
all the above stated properties of CHF to
make it useful for the authentication purpose.

In order to assess the new
algorithm for CHF applications,
the code was implemented in
CUDA and executed on a GPU
machine with the following
configuration:

The test environment was a server with the
following configuration:
• Processor: Intel Core 2 Duo CPU E7500@2.93GHz X 2
• RAM: 3.0 GiB
• O.S.: Ubuntu Linux 11.04 32 bit
• Platform: GCC Infrastructure- gcc 4.5.4
• GPU: Tesla C2075
• API: CUDA 5.5

In Pinned Memory concept there is no need to copy the data from Host Memory to Device
Memory. Pinned memory is used as a staging area for transfers from the device to the host.
The cost of transfer between pageable and pinned host arrays can be avoided by directly
allocating the host arrays in pinned memory.
Figure 4 shows the results after using Pinned Memory concept. The speedup achieved now
is approximately 3x.

Figure 3: Execution time of SHA 1 and RSHA 1 for different file sizes

CODE OPTIMIZATION

The reason for the non performance was analyzed by using the profiler and was
found that time of memory copies from Host to Device and Device to Host was the
main overhead of the code. So a new technique of Pinned Memory was used to
optimize the code and save memory flaws.

0

0.05

0.1

0.15

0.2

0.25

512 KB 1 MB 2 MB 3 MB 4MB 8 MB

Ex
ec

ut
io

n
Ti

m
e

(in
 m

s)

 SHA-1 RSHA-1 on CPU RSHA-1 on GPU

Sr. No. File Size
Execution Time(in ms)

SHA-1
RSHA-1 on

CPU
RSHA-1 on

GPU

1 512 KB 0.01426 0.01307 0.05917
2 1 MB 0.02829 0.02476 0.05991
3 2 MB 0.05836 0.05064 0.06219
4 3 MB 0.08543 0.07175 0.06989
5 4MB 0.11312 0.09544 0.07898
6 8 MB 0.21336 0.17754 0.13363

0

0.05

0.1

0.15

0.2

0.25

512 KB 1 MB 2 MB 3 MB 4MB 8 MB

Ex
ec

ut
io

n
tim

e(
in

 m
s)

 SHA-1 RSHA-1 on CPU Optimized RSHA-1 on GPU

Sr. No. File Size

Execution Time(in ms)

SHA-1
RSHA-1 on

CPU

Optimized
RSHA-1 on

GPU

1 512 KB 0.01426 0.01307 0.01001
2 1 MB 0.02829 0.02476 0.01579
3 2 MB 0.05836 0.05064 0.03137
4 3 MB 0.08543 0.07175 0.04167
5 4MB 0.11312 0.09544 0.05026
6 8 MB 0.21336 0.17754 0.08036

Figure 2: (a) Pre-image Resistance (b): Weak Collision Resistance
(c) Collison Resistance

(a) (b) (c)

CONTACT NAME

Dr. Bhanu Kapoor: bkapoor@mimasic.com
POSTER

P5167

CATEGORY: DEVELOPER - ALGORITHMS - DA06

