
Synthetic Aperture Radar Image Processing by Range
Migration Algorithm using Multi-GPUs

Barath Sastha S, Sachin B Patkar and Y. S. Rao
Indian Institute of Technology Bombay, Mumbai 400076

Abstract
Range Doppler algorithm is a radar image processing algorithm used to produce high
resolution images of strip map satellite data. Two dimensional images can be produced
from raw data by finding the intensity and location of scatterers in the scene. Range
Migration is an effect which significantly affects the resolution of the image. Range Doppler
algorithm eliminates this effect and produces high quality image. Here we have
implemented Range Doppler algorithm on a multi-GPU and accelerated the computation
process.
 Introduction

SAR Image

Results and Conclusion

Acknowledgements
Authors thank CUDA Centre of Excellence, IIT Bombay for access to hardware
resources and Mandar Gurav for discussions.

References
1) I.G. Cumming, F.H. Wong, Digital Processing of Synthetic Aperture Radar Data,

Artech House, 2004
2) W.G. Carrara, R.S. Goodman, R.M. Majewski, Spotlight Synthetic Aperture

Radar Signal Processing Algorithms, Artech House (1995)
3) https://earth.esa.int/handbooks/asar/CNTR2-6-1-2-3.html
4) Prof. Nagendre Gj jar , Vishal Mehta ,Nilesh M. Desai, PP04 Parallel

Implementation of Range Doppler Algorithm for Synthetic Aperture Radar on
GPU, GTC 2013.

The raw SAR data used for this experiment contains 27200 lines * 5616 complex elements.
The entire data is subdivided into patches of size 2048 * 5616. Each patch is computed
separately and the output data is merged together to produce the final image.

Range Chirp Function The range chirp function is found using the centre frequency and
slope of the transmitted chirp which are specific to ERS satellites. The frequency domain
version of range chirp function is obtained by applying an FFT and conjugate on it.
Manually negating the imaginary component of complex numbers was 4 times faster than
using cuConjf function to find the conjugate.

Range Compression The signals are brought into range spatial frequency domain by
applying FFT [2]. cuFFT library has been used throughout the CUDA program to find FFTs
and IFFTs. Each line of the patch is multiplied by the matched filter which is a complex
multiplication. Manual complex number multiplication was around 4 times faster than
using cuCmulf on a matrix of size 2048 * 8192.

Range IFFT After the range compression is done an IFFT operation is done on each line
of the patch. As the compressed data is shorter than uncompressed data, a part of each
line is thrown away as junk [3].

Calculate Doppler Centroid Doppler centroid frequency is the frequency of the return
from the target when it is located in the centre of the beam [3]. It locates the signal energy
in the azimuth frequency domain. Manual complex multiplication and addition was done
instead of using cuCmulf and cuCaddf function as they were around 7 times faster for a
matrix data of size 2047 * 4912.

Azimuth FFT An azimuth reference function is found for each range bin and an FFT is
applied on it.

Range Cell Migration Correction A scatterer is located by its range and range rate.
[2]Processing a raw SAR data becomes difficult as the differential range and differential
range rate to each scatterer vary over the synthetic aperture length. This effect is called
range cell migration. Range cell migration correction aligns each scatterer or target in its
range bin before azimuth compression is done.

Azimuth Compression This process is for multiplying azimuth
reference function with range migration corrected data.

Azimuth IFFT The complex look image is obtained by taking IFFT
on the azimuth compressed data. Instead of dividing each
element by vector size, multiplying them by its inverse was around
5 times faster for normalization.

The above image is that of Mumbai taken by ERS2 satellite.

Results

CPU GeForce GTX 560 Ti Tesla C2070 Tesla K40c
Time Taken (Seconds) 45.824 1.426 1.269 1.199

45.824

1.426 1.269 1.199
0

5

10

15

20

25

30

35

40

45

50

Execution Time Comparison

Time Taken (Seconds)

Range Matched Filtering Azimuth Matched Filtering Generate Azimuth
Reference Doppler Centroid

Tesla C2070 30.944 30.42 23.36 20.224
Tesla K40c 81.245 55.22 51.99 43.127

0

10

20

30

40

50

60

70

80

90

GFLOPS/s of GPU Kernels

Tesla C2070

Tesla K40c

Range FFT Range IFFT Azimuth FFT Azimuth IFFT
Tesla C2070 258.815 251.162 49.24 36.09
Tesla K40c 472.73 491.662 92.88 98.0267

0

100

200

300

400

500

600

GFLOPS/s of FFTs & IFFTs

Tesla C2070

Tesla K40c

Data 50x Data 100x Data 200x Data
Single 1.269 54.56 108.768 217.036
Multi 1.213 36.724 73.075 146.204

0

50

100

150

200

250

Multi GPU Execution Time Comparison (Tesla C2070) in sec

Single

Multi

Hardware Setup
CPU: Intel (R) Core (TM) i7 - 2600
CPU @ 3.40 GHz
GPU: GeForce GTX 560 Ti
The CPU code is a MATLAB code run
on 64 bit MATLAB 7.10.0.499
R2010a on the above Intel Core i7
machine. The CUDA program is also
tested on Tesla C2070 and Tesla
K40c GPUs.

Due to overhead occurred due to cudaMalloc and cudaFree statements, there is
not much advantage in using two GPUs over one for small data. As the data
grows larger you can clearly see the improvement in speed of computation.

The Range Doppler algorithm implemented using CUDA program is described below. Note
that Range Migration Algorithm is a general term for algorithms which eliminates Range
Migration effects.

Range Doppler algorithm is implemented on both single GPU as well as multi
GPU system and acceleration is obtained. Future work of this project involves
implementing Range Doppler algorithm for
•Raw data obtained in scansar mode which is complex and computationally
intensive .
•Interferometric SAR data and data containing more range migration effects.
Our work differs from that of [4] in the following sense. In addition to
optimization techniques, we have studied GFLOPS/s performance of each
kernel and modified them for better performance, better asynchronous
memory copy, compile time memory allocation using static global memory. Our
CUDA code performance in terms of GPU runtime seems to be marginally
better than that obtained in their work.

The author can be reached at this mail id: bsastha@gmail.com

Time taken by different GPUs to produce the complete image matrix is as follows:

Multi-GPU System
Multi-GPU system used for this experiment consists of two Tesla
C2070 GPUs. CUDA code is modified to invoke two pthreads
and send half of the data to the first GPU and the remaining
data to the second GPU.

contact Name

Barath Sastha S: barath_sastha@ee.iitb.ac.in
Poster

P5171

Category: Video & Image Processing - Vi05

