
• Controlling the shape and location of a fluid stream provides a fundamental tool for creating structured 
materials, preparing biological samples, and engineering heat and mass transport. 

• Recent work has demonstrated the concept of sculpting fluid streams in a microchannel using a set of pillars 
that individually deform a flow in a predictable pre-computed manner [1]. 

• These pillars are placed in a defined sequence within the channel, whereby the composition of their individual 
flow deformations form complex user-defined flow shapes [2]. 

• Creating user-defined flow shapes important for practical applications currently requires laborious trial and error 
design iterations, or time consuming evolutionary algorithms prohibitive to real-time design. 

• We explore the applicability of machine learning models using GPU acceleration to serve as a map between 
user-defined flow shapes and the corresponding sequence of pillars. 

Initial results provide significant credibility to the hypothesis regarding 
usefulness of the proposed Deep Learning framework for flow sculpting. The 
network consists of five hidden layers, each with 500 hidden units. 

Flow based on actual (top) and 
predicted (bottom) pillar sequences 

Pixel Match Rate = 96.6% 

Match Rate Statistics 
Resolution 12 x 100 24 x 200 

Min 55.00% 55.15% 
Mean 82.74% 82.79% 

Median 83.75% 83.98% 
Max 98.83% 98.90% 

Resolution 12 x 100 24 x 200 
Match Rate Test Examples 

75% and above 82.86% 82.43% 
80% and above 66.48% 67.42% 
85% and above 43.36% 44.77% 
90% and above 18.87% 19.00% 
95% and above 2.76% 2.83% 

Table 1: Prediction Performance Table 2: Threshold Scores 

• We use a Deep Learning based framework to extract pertinent 
nonlinear features from flow shape images as well as learn a density 
estimator with pillar configurations as the target distributions.  

• As the forward problem of generating simulated flow shapes for a 
certain pillar configuration is computationally inexpensive, we 
generate a large set (on the order of millions) of labeled images for 
training. 

• The training process uses  Deep Neural Networks [4] (pretrained with 
a Deep Belief Network) in Theano’s deep learning framework [5][6] 
that is accelerated using NVIDIA’s GeForce GTX TITAN Black.  

Methods 

• Current methods that tackle the inverse 
design problem in pillar programming are 
successful [3], but require many hours – 
perhaps days – of heavy computation, thus 
making their utility in real-time suspect. 

• Our goal is to develop CAD tools (like splice) 
that enables engineer to rapidly design fluid 
flow profiles for their applications without full-
scale Navier-Stokes simulations and 
experiments. 

Abstract 

• Use higher resolution images 
• Test scaling on multiple GPUs 
• Explore different inlet configurations 
• Improve data generation to cover the sample space more evenly 
• Explore other types of deep learning networks and error metrics 

 

Motivation 

Future Work 

Left: single-pillar deformation.  Right: “pillar programming”, with multiple pillars. 

  

  

  

  

  

  

  

  

  

    
        

    
        

  
  

  
  

    
  

  
  

    

Left: Pillar sequences are converted to distributions by mapping pillar diameter and 
position as Gaussian distributions, which will be used in the neural network input layer.  
Right: Flow simulations are reshaped into binary vectors, which will be the labels used 
in the neural network input layer. 

    
  

  

    

Prediction Results 
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Average Time (seconds) per 
Training Epoch 

58.59 s 

443.63 s 
GPU is 7.5x 
faster than 

CPU 
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Optimization framework 

Pillar programs (top row), simulations (middle 
row) and experimental validation (bottom row).  

The goal of inverse design. 
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