
Cost-Efficient Cluster Design for High Dimensional Similarity Search

1. Similarity Search
 Given
 D dimensional space
 N sparse points we wish to search across
 Query stream with an arrival rate of α
 A distance metric in this space
 Problem
 Find the k (k << N) most similar matches (nearest

neighbors) for each of the query points
 Datacenter constraint
 Solve the problem within a deadline T seconds achieving

maximum throughput and efficiency

2. Algorithms for Search

4. SpMM - Host 5. SpMM – Accelerator

Sandeep R Agrawal, Christopher M Dee, Alvin R Lebeck
Department of Computer Science, Duke University

 Assume cosine similarity as a similarity metric
 Exhaustive search => Computing similarities between

each point and a query cohort becomes a Sparse
Matrix Matrix Multiplication (SpMM) operation

 Partition shard into tiles of size μ each
 Assume tiles are stored in CSR format.
 Compute the Top-k similarities for each query point

 Partition tile into microtiles at runtime to increase parallelism per query
 Two step partition function due to PCI-E constraints
 Partition2 creates parallelism for SpMM
 Partition1 creates parallelism for Partition2

 Tiles reside in accelerator memory, avoiding PCI-E transfers
 Use scratchpad memory to store occupancy array

7. Similarity Search Pipeline (Accelerator)

3. SpMM – Our Algorithm

 Tiles – Better cache locality
 Partition Query cohort uniformly across threads/cores
 Cores work on different queries (no atomics) but share tile
 More threads => More ILP, but More inflight query state => cache

contention
 For single queries (cohort size = 1), use one tile per thread

 Columns(S) does not need to be sorted as we are only
interested in Top-k results

 Store Occupancy array per query (essentially a perfect
hash function generated at runtime)

 For nonzero A[m][n] at index p in sparse array,

if occupancy[n] = 0
values(S)[p] = A[m][n]
columns(S)[p] = n
occupancy[n] = p

else
values(S)[occupancy[n]] += A[m][n]

8. Experimental Setup

 Search across the English Wikipedia (Bag of words model)
 Queries are randomly picked from page titles
 95% latency evaluated using Monte Carlo simulations
 Create models for $capital and $operational based on number of machines and energy

consumed for searching across 1 Billion documents
 Pick μ and C giving lowest $total = $capital + $operational

Platform $fixed $cpu $acc Description
Xeon 4500 2300 - PowerEdge R720, 2 x Xeon E5-2650v2, 22 nm, 16C/32T,

8x8GB 1866MHz RDIMMs
Xeon + Titan 4500 2300 1000 PowerEdge R720, 2 x Xeon E5-2650v2, GTX Titan, 28 nm,

2688 CUDA cores, 14 SMs, 6GB GDDR5 Memory
Xeon + Maxwell 4500 2300 150 PowerEdge R720, 2 x Xeon E5-2650v2, GTX 750Ti, 28 nm,

640 CUDA cores, 5 SMs, 2GB GDDR5 Memory
SoC + Titan 200 - 1000 J1800 SoC, 22 nm, 4GB DDR3L RAM, GTX Titan
SoC + Maxwell 200 - - J1800 SoC, 22 nm, 4GB DDR3L RAM, GTX 750Ti

9. Evaluation

$total for T = 20 ms and T = 50 ms and
α = 5,000 queries/sec

Funding by National Science Foundation (CCF-1335443),
NVIDIA and Duke University

D μ

X

μ

Q A S

k

topKSpMM

cohort

Partition1 Partition2 SpMM

topK

1
4

8 5
6

Query
Cohort(Q)

Partition tile
into subtiles

using query terms

Generate
values(S) and

columns(S)

Get k
highest
matches

Host Accelerator

2

Copy partitions
and Q

to accelerator
3

Partition subtiles
into microtiles

using query terms

Copy k matches
To host

topK

Repeat for
other tiles
in shard

7

Get final
k matches
for shard

across tiles

0

5

10

15

20

25

30

$ t
ot

al
(M

illi
on

s)

T = 20 ms T = 50 ms

Xeon+Maxwell

Xeon+Titan

Xeon+2xMaxwell

SoC+Maxwell

SoC + Titan

0.00

0.10

0.20

0.30

0.40

0.00 0.10 0.20 0.30 0.40 0.50

$ c
ap

ita
l(

N
or

m
al

iz
ed

 to
 X

eo
n)

$operational (Normalized to Xeon)

Xeon+Maxwell

Xeon+TitanXeon+2xMaxwell

SoC+Maxwell SoC + Titan

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.00 0.20 0.40 0.60 0.80

$ c
ap

ita
l (

N
or

m
al

iz
ed

 to
 X

eo
n)

$operational (Normalized to Xeon)

Breakdown of $total for T = 20 ms and
α = 5,000 queries/sec

Breakdown of $total for T = 50 ms and
α = 5,000 queries/sec

 Augmenting existing Xeon based servers with accelerators results in a 2.7x to 4.4x cost
reduction for T = 20 ms.

 Replacing a Xeon based cluster with an accelerator based cluster reduces TCO by more
than 30x while consuming 4x less total power.

contact name

Sandeep Agrawal: sandeep@cs.duke.edu
Poster

P5175

category: DAtA Center, ClouD ComPuting & HPC - DC01

