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Abstract

New numerical paradigm for efficient GPU-accelerated multiphase gas-liquid tlow solver
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Numerical simulations of compressible multiphase gas-liquid flows are still challenging, especially from the computational time point of view. For gas-liquid flows, the ratio between speeds of sound and material velocity makes the flow evolution quite slow on standard CPUs. For that reason, we are looking for new paradigms of mathematical
modelling, numerical solution and parallel computation. We investigate into two complementary ways: i) a more conventional numerical solver, namely a remapped Lagrange scheme, but showing some performance issues on GPU processors; ii) an attempt to derive a Lattice Boltzmann-like solver (LB) for such kind of fluids. LB methods are known to
provide strong GPU acceleration. As preliminary results, we get reasonable GPU speedups for remapped Lagrange solvers, and it was able to derive compressible LB solver with interesting features. We are confident into achieving runtime multiphase dynamics, which would be of high industrial interest.

Objectives
Solving the inviscid Euler equations for immiscible air-liquid flows:
[ O/(ap,) + V- (apyii) = 0,
S (1 —a)pe) 4 V- ((1- a)pe) = 0,
L Oi(pu) -V (pi@d+pl) = 0
with

e o, mass fraction of gas (€ {0,1})

e p, (and p(), gas (and liquid) density
)o(p,) if o =0

e speed u and pressure p = i j/'/, . |
pe(pe) if a =1

From the numerical point of view, mixed finite volume cells may occur, involving « to be be-
tween 0 and 1, and an additional closure is needed.

Foreseen applications are industrial processes and naval applications like Liquid Natural Gas
(LNG) sloshing into tankers.

Equation of state (EOS)

Closure = pressure equilibrium within a mixed gas-liquid cell. Simplified EOS are used in
such a way that a can be derived easily. For liquid, we use

i o | 0
/v)!/(‘.(_; - p//(/)y) = P = Pt (/)1) = ’

where
e ¢, (and ¢/), constant reference gas (and liquid) speed of sound

e p;, reference pressure

We get a closed form for both a and p:
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where m, = ap,, my= (1 —a)p; and K = o}

Py

For the free-surface moving boundary, we have developed an innovative antidiffusive in-
terface capturing scheme that provides strong GPU performance, unlike standard Volume-Of-
Fluid (VOF) methods that usually topple the parallel performance because of multiple array
indirections.

Mathematical and numerical setting
Compressible Lattice Boltzmann method (LBM)

LBM (ref [2]) solves the transport-reaction Boltzmann equation instead of the Euler system
(written in 1D for simplicity)
fi' =1

Orfi + 00, fi =
To link this equation to the ones we want to solve, we need these constraints :

Z (1.1';. (,2) [t = (/). pu, pu’ + [)(/)))
In the simplified case where the pressure equation of state is the same in both phases
(p = plp) = Cp7), it gives us
Introducing both physical speed of sound ¢ = /vp/p and nu-
merical speed of sound s = Ax/At, we set

1 L5 p
eq _ 2
J= = —5pm+5pmT+ 5. o the numerical Mach number m = u/s
O 9 p
¢ ot =p—pm”— =, e the physical Mach number M = u/c
= i) pm + i) om? + .‘)1) . e m < M (subcharacteristic constraint)
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In two dimensions, if we choose a D2Q9 lattice, this gives us
nine unknowns for only six equations. Choosing a lattice with
less velocities implies other issues, like unstabilty because of the
lack of symmetry in the lattice. So we need a trick to close the
system and find a solution. We proceed by space tensorization.

We get fij = gihj with 1,j € {—. 0. +}.
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We tested our model on the dynamic of a compressed disc with periodic boundary condi-
tions. We can see the evolution of the disc at different times. This case allows us to check
the symmetry and rotational invariance as well as the stability during the propagation of the
shock and the interactions between the waves. Results are encouraging but still with some
robustness issues to understand.
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Figure 1: Example of shock propagation into the compressible medium captured by the Lattice Boltzmann
solver.
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For now, we only have a LBM for compressible fluids with EOS p = p(p) in two dimensions.
To extend this to air-liquid flows, we use method (A) of Larrouturou’s work (Ref. [3]) for deal-
ing with mass fractions. It works fine in 1D and we already made a successful 2D test on a
Kelvin-Helmholtz instability test case and got accurate results.
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Figure 2: Kelvin-Helmholtz instabilities developing at the interface of contrary flow

Lagrange-remap (or remapped Lagrange) scheme

This method solves the Euler system in its Lagrangian formulation (Reynolds’ transport the-
orem). Then we need to project the values from the moving referential on the fixed Eulerian

grid.
Code Time (s) SpeedUp With
Matlab 371.465 1

CUDA AoS 125.760 122.950 303 e Results obtained on a Quadro K2100M,

CUDA SoA 12.740 17.710  20.97

Table 1: Execution time (in single and double pre-
cision) and speed ups for the codes

e Final time of the simulation 7%, = 0.8s

e Squared grid of size 128
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Figure 3: Evolution of the dambreak over time with Lagrange Remap scheme

Size Time (s)
128 x 128 12.740
512 x 512 591.037 ~ 10min

Table 2: CUDA SoA single precision, 7§, = 0.8s

During this simulation time, we observe the collapse of the initial water column, then the
collision with the rightward wall, the bounce-back and a wave breaking with formation of a

compressible air pocket. Secondary waves then appear. The numerical solver use here is from
(ref. [1]).

Figure 4: Yet another dam break case with different geometry and initial conditions.

Conclusion and forthcoming research

We have developed a model which is effective and accurate but we chose a pressure equation
of state for the liquid that gives a gas fraction « written in closed form, allowing for high-
efficiency GPU parallelism. Others EOS may be more physical but they imply the need of an
iterative solver for . We also notice some numerical instabilites occuring at phase interfaces
for high density ratios by the multiphase Lattice Boltzmann model.

But we have ideas and plan to derive a hybrid mixed approach that combines both
Lagrange-remap scheme and Lattice-Boltzmann solver, taking advantage of each of the meth-
ods. We are currently working on that and preliminary results are quite promising. We will
make some performances comparison with Tesla K20 and K40 soon.
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