CATEGORY: DEVELOPER - TOOLS & LIBRARIES - DT02

GP TECHNOLOGY
CONFERENCE

t'*Computatior

Agrawal, Nitin'2, Gawali, Deepak?3, Nataraj S.V., Paluri?

1Cluster Innovation Centre, University of Delhi, India
?2Indian Institute of Technology, Bombay, India
3Vidyavardhini's College of Engineering and Technology, Maharashtra, India

The work aims at investigating the use of Basic spline polynomial form in global polynomial Input: System Configuration
optimization in an accelerated manner. The current work involves accelerated computation of 1. coeffs : Polynomial Coefficient Matrix
B-spline coefficients corresponding to a polynomial in power form on a CPU environment. 2. degrees : A vector of degrees for each of the variables CPU: Intel(R) Xeon(R) CPU E5-2620 @ 2.00HHZz
Furthermore the algorithm and methodology is accelerated on Graphics Processing unit for 3. segments : A vector of segments for each of the variables GPU: NVIDIA Tesla K40

4. domains 1 A vector of domains for each of the variables

handling larger problems in a substantially less time. The parallelized GPU based approach
offers substantial speed-ups over the CPU based implementation being run on a Dodeca-core Result: bs_coe f fs=B-spline Coefficient Matrix

Processor. initialization;

/* computing knot vectors and pl matrices * / intel.
Basic Splines L_/

for : = 0O to no_of_vars — 1 do

knots=find_knot_vectordegrees, segements, domains /+ Parallel =
B-splines are the spline functions having minimal support for a given degree, smoothness - GPU Kernel Launch */
and domain. These splines for a equidistant set of knots could be used for the purpose of fz?:‘d—f:’_z <<< _ _
curve fitting and otherwise. In the current scenarios B-splines are being used to estimate a en dg rid-size, block _size >>> (Pi_matrices,knots, degrees,segment) An example polynomial for which B-spline fit was computed
polynomial function for achieving goals like computation of global optimization values bs_coef fs = coef fs:
amongst others' for i = O to noof vars — 1 do 100f4 — ZOOfZg + fz — 2f + 1OOg4 — ZOngh + 101 g2 — 29 + 100h*
P, A spline fun.ction of given /% Multidimensional coefficient matrix is reshaped — 200h%i + 101h% — 2h + 100i* — 200i%j + 101i* — 2i + 100;*
1= h=1 =1 = fy = f1q :jﬁ{:i:’;xapf’e";‘:gdsijI'I‘:::_ Lo @ two dimensional matrix cuch that o — 20052k + 10052 — 2j + 100k* — 200kl + 101k? — 2k + 1001
combination of the B-splines mii?iizz e S oy —2000*m + 1011% — 21 + 100m* — 200m*n + 101m* — 2m + 100n*
P of that degree. The thus Matriz_multiplication(pi_matrices|i|, bscoef fs); —200n%0 4+ 101n* — 2n 4+ 1000* + 9
P_l. (’)_ - * P computed B-spline is unique /+ Parallel multiplication on GPU %/
s e for a laid down set of knots. Matriz tranpose(bs_coef fs); No. Of Variables :10
P, /* Parallel Transpose on GPU for n—-dimensicnal Domain : f,g,h,i,j,k [mn,o € [-5,10]
Lranspose function */ No. Of Segments : 2
. . . end
A spline can be formulated in the following manner . .
Algorithm 1: Parallel B-spline Coefficient Computation
Ski(x) = zaiBi,k(x) The table below portrays the comparison between the serial and GPU accelearated
/ imimentation for the above discusssed problem

Kernel find_pi ()

The polynomial can be further derived from the B! B! Input:

following recursive formulation
1. knot_vector : The knot vector

2. degree : Degree of the corresponding variable(s)

3. segments : No. of segments for the corresponding variable(s)

» B
. g :
| Resul: P mitrix for the coresponding variable(s ___ Conclusins

Execution time Failed to respond 13.5 1.27
(seconds)

1., t;,<x<t{;
Bia(0) = {if 1]

otherwise

B, = xX—t; B;_1(x)+ Livk—X Bii1p1(%) initialization; | | | | o
’ tivk-1—ti tivk—Li+1 ’ /+ Computation of the Pi Matrix using a thread for Accelaration of about 10.62 times was obtained on a GPU based implementation in
each pf the Pi element %/ comparison to CPU based implementation in C, while the Matlab version failed to

deqg = threadIdx.x; produce meaningful results for the above discussed problem.

base = threadldx.y;

knot_part = knot_vector (base + 1 : base + degree);

/+ complling element (g) of the knot_vector to be used
for computlng the corresponding pl matrilx

The process enables oneself to obtain the upper and lower bounds for a polynomial function.
The largest value among the B-spline coefficients generated corresponding to a polynomial
function can be considered to be an upper bound for that polynomial while the lowest value

Immediate future work involves conducting comparative experiments for benchmark

could be considered to be a lower bound . The repeated application of this process enables element (&) i/ _ _ _ _
tation of the tiaht bounds e 1th problems in order to estimate the speedups on the GPU based implementation over C
computa 9 ' ‘ fLaeg == 1 1en based serial CPU implementation in qualitative and quantitative terms . The algorithm so
S . . pi-matriz|base||deg|=1; far designed furthermore needs to be incorporated into the optimization algorithm being
Application of Basic Splines else N
worked upon for the purpose of global optimization
/+ If the number of 12’ in the binary
* B-splines could be used to get a fair enough approximation of a multivariate polynomial of representation is equal to the degree then Moreover the GPU based implementation needs be compared against the CPU based
sufficiently high degree into splines of lower degrees which can ease the process of the knot_part elements corresponding to the parallel implementation on an OpenMP based platform.
added to the accumulator */
- Splines of lower degrees could reduce the sensitivity of the polynomial which can combat for i = 0to27¢¢ — 1 do . De Boor, C. (1972). On calculating withj b-splines. Journal of Approximation Theory
round-off errors to a great extent. brum = decimal2binary(i); 6(1):50-62.
if G?I‘e;@—”um) z: deg _thzl_l : « Epperly, T. G. and Swaney, R. E. (1996). Branch and bound for global nlp: lterative Ip
 B-splines are so formulated that each spline affects only limited number of control points o 1c§s_f eten_ones an ‘zce§(-naim) algorithm & results. In Global Optimization in Engineering Design, pages 37-73.
L s . - - | . t o o maulti_sum(knot_part, indices) Springer.
which n turns -a OV_VS a local contro ove.r © polyhomia cor? .raryf O_O e Cf""’es g end « Garloff, J. (1986). Convergent bounds for the range of multivariate polynomials. In
schemes such Bezier where the control in global and a modification in any fit affects all end Interval Mathematics 1985, pages 37—56. Springer.

other points. « Garloff, J. and Smith, A. P. (2001). Solution of systems of polynomial equations by

end .) . .
using Bernstein expansion. Springer.

Algorithm 2: Parallelized Algorithm for P1 Matrix generation
Images references: http://www.brnt.eu , http://www.math.uni-sb.de/

