CATEGORY: DEVELOPER - TOOLS & LIBRARIES - DT02 POSTER **CONTACT NAME** Nitin Agrawal: nitin.cic@gmail.com **P5184**

GPU Accelerated B-spline coefficient Computation

Abstract

The work aims at investigating the use of Basic spline polynomial form in global polynomial optimization in an accelerated manner. The current work involves accelerated computation of B-spline coefficients corresponding to a polynomial in power form on a CPU environment. Furthermore the algorithm and methodology is accelerated on Graphics Processing unit for handling larger problems in a substantially less time. The parallelized GPU based approach offers substantial speed-ups over the CPU based implementation being run on a Dodeca-core processor.

Basic Splines

B-splines are the spline functions having minimal support for a given degree, smoothness and domain. These splines for a equidistant set of knots could be used for the purpose of curve fitting and otherwise. In the current scenarios B-splines are being used to estimate a polynomial function for achieving goals like computation of global optimization values amongst others`

A spline function of given degree for a given set of knots could be expressed as a linear combination of the B-splines of that degree. The thus computed B-spline is unique for a laid down set of knots.

A spline can be formulated in the following manner

$$S_{k,t}(x) = \sum_{i} a_i B_{i,k}(x)$$

The polynomial can be further derived from the following recursive formulation

$$B_{i,1}(x) = \begin{cases} 1 & \text{if } t_i \leq x \leq t_{i+1} \\ 0 & \text{otherwise} \end{cases}$$
$$B_{i,k} = \frac{x - t_i}{t_{i+k-1} - t_i} B_{i,k-1}(x) + \frac{t_{i+k} - x}{t_{i+k} - t_{i+1}} B_{i+1,k-1}(x)$$

The process enables oneself to obtain the upper and lower bounds for a polynomial function. The largest value among the B-spline coefficients generated corresponding to a polynomial function can be considered to be an upper bound for that polynomial while the lowest value could be considered to be a lower bound. The repeated application of this process enables computation of the tight bounds.

Application of Basic Splines

- B-splines could be used to get a fair enough approximation of a multivariate polynomial of sufficiently high degree into splines of lower degrees which can ease the process of finding optimal points.
- Splines of lower degrees could reduce the sensitivity of the polynomial which can combat round-off errors to a great extent.
- B-splines are so formulated that each spline affects only limited number of control points which in turns allows a local control over the polynomial contrary to other curves fitting schemes such Bezier where the control in global and a modification in any fit affects all other points.

Agrawal, Nitin^{1,2}, Gawali, Deepak^{2,3}, Nataraj S.V., Paluri²

Input:

- GPU Kernel Launch

- transpose function

