
The process enables oneself to obtain the upper and lower bounds for a polynomial function.
The largest value among the B-spline coefficients generated corresponding to a polynomial
function can be considered to be an upper bound for that polynomial while the lowest value
could be considered to be a lower bound . The repeated application of this process enables
computation of the tight bounds.

`

The work aims at investigating the use of Basic spline polynomial form in global polynomial
optimization in an accelerated manner. The current work involves accelerated computation of
B-spline coefficients corresponding to a polynomial in power form on a CPU environment.
Furthermore the algorithm and methodology is accelerated on Graphics Processing unit for
handling larger problems in a substantially less time. The parallelized GPU based approach
offers substantial speed-ups over the CPU based implementation being run on a Dodeca-core
processor.

Algorithmic Implementation Results & Conclusion

System Configuration

CPU: Intel(R) Xeon(R) CPU E5-2620 @ 2.00HHz
GPU: NVIDIA Tesla K40

An example polynomial for which B-spline fit was computed

100𝑓𝑓4 − 200𝑓𝑓2𝑔𝑔 + 𝑓𝑓2 − 2𝑓𝑓 + 100𝑔𝑔4 − 200𝑔𝑔2ℎ + 101 𝑔𝑔2 − 2𝑔𝑔 + 100ℎ4

− 200ℎ2𝑖𝑖 + 101ℎ2 − 2ℎ + 100𝑖𝑖4 − 200𝑖𝑖2𝑗𝑗 + 101𝑖𝑖2 − 2𝑖𝑖 + 100𝑗𝑗4

− 200𝑗𝑗2𝑘𝑘 + 100𝑗𝑗2 − 2𝑗𝑗 + 100𝑘𝑘4 − 200𝑘𝑘2𝑙𝑙 + 101𝑘𝑘2 − 2𝑘𝑘 + 100𝑙𝑙4

− 200𝑙𝑙2𝑚𝑚 + 101𝑙𝑙2 − 2𝑙𝑙 + 100𝑚𝑚4 − 200𝑚𝑚2𝑛𝑛 + 101𝑚𝑚2 − 2𝑚𝑚 + 100𝑛𝑛4

− 200𝑛𝑛2𝑜𝑜 + 101𝑛𝑛2 − 2𝑛𝑛 + 100𝑜𝑜2 + 9

No. Of Variables :10
Domain : 𝒇𝒇, 𝒈𝒈, 𝒉𝒉, 𝒊𝒊, 𝒋𝒋, 𝒌𝒌, 𝒍𝒍,𝒎𝒎, 𝒏𝒏, 𝒐𝒐 ∈ [−𝟓𝟓, 𝟏𝟏𝟏𝟏]
No. Of Segments : 2

The table below portrays the comparison between the serial and GPU accelearated
imlmentation for the above discusssed problem

Accelaration of about 10.62 times was obtained on a GPU based implementation in
comparison to CPU based implementation in C, while the Matlab version failed to
produce meaningful results for the above discussed problem.

Immediate future work involves conducting comparative experiments for benchmark
problems in order to estimate the speedups on the GPU based implementation over C
based serial CPU implementation in qualitative and quantitative terms . The algorithm so
far designed furthermore needs to be incorporated into the optimization algorithm being
worked upon for the purpose of global optimization

Moreover the GPU based implementation needs be compared against the CPU based
parallel implementation on an OpenMP based platform.

References

• De Boor, C. (1972). On calculating with¡ b-splines. Journal of Approximation Theory,
6(1):50–62.

• Epperly, T. G. and Swaney, R. E. (1996). Branch and bound for global nlp: Iterative lp
algorithm & results. In Global Optimization in Engineering Design, pages 37–73.
Springer.

• Garloff, J. (1986). Convergent bounds for the range of multivariate polynomials. In
Interval Mathematics 1985, pages 37–56. Springer.

• Garloff, J. and Smith, A. P. (2001). Solution of systems of polynomial equations by
using Bernstein expansion. Springer.

Matlab Code C Code CUDA C parallel
code

Execution time
(seconds)

Failed to respond 13.5 1.27

Basic

B-splines are the spline functions having minimal support for a given degree, smoothness
and domain. These splines for a equidistant set of knots could be used for the purpose of
curve fitting and otherwise. In the current scenarios B-splines are being used to estimate a
polynomial function for achieving goals like computation of global optimization values
amongst others`

Images references: http://www.brnt.eu , http://www.math.uni-sb.de/

A spline function of given
degree for a given set of knots
could be expressed as a linear
combination of the B-splines
of that degree. The thus
computed B-spline is unique
for a laid down set of knots.

The polynomial can be further derived from the
following recursive formulation

𝑩𝑩𝒊𝒊,𝟏𝟏 𝒙𝒙 = 𝟏𝟏
𝟏𝟏𝒊𝒊𝒇𝒇 𝒕𝒕𝒊𝒊 ≤ 𝒙𝒙 ≤ 𝒕𝒕𝒊𝒊+𝟏𝟏

𝒐𝒐𝒕𝒕𝒕𝒕𝒐𝒐𝒐𝒐𝒐𝒐𝒊𝒊𝒐𝒐𝒐𝒐

𝑩𝑩𝒊𝒊,𝒌𝒌 = 𝒙𝒙−𝒕𝒕𝒊𝒊
𝒕𝒕𝒊𝒊+𝒌𝒌−𝟏𝟏−𝒕𝒕𝒊𝒊

𝑩𝑩𝒊𝒊,𝒌𝒌−𝟏𝟏(𝒙𝒙)+ 𝒕𝒕𝒊𝒊+𝒌𝒌−𝒙𝒙
𝒕𝒕𝒊𝒊+𝒌𝒌−𝒕𝒕𝒊𝒊+𝟏𝟏

𝑩𝑩𝒊𝒊+𝟏𝟏,𝒌𝒌−𝟏𝟏(𝒙𝒙)

A spline can be formulated in the following manner

𝑺𝑺𝒌𝒌,𝒕𝒕 𝒙𝒙 = �𝒂𝒂𝒊𝒊𝑩𝑩𝒊𝒊,𝒌𝒌(𝒙𝒙)
𝒊𝒊

Application of Basic Splines

• B-splines could be used to get a fair enough approximation of a multivariate polynomial of
sufficiently high degree into splines of lower degrees which can ease the process of
finding optimal points.

• Splines of lower degrees could reduce the sensitivity of the polynomial which can combat
round-off errors to a great extent.

• B-splines are so formulated that each spline affects only limited number of control points
which in turns allows a local control over the polynomial contrary to other curves fitting
schemes such Bezier where the control in global and a modification in any fit affects all
other points.

Abstract

Basic Splines

Application of Basic Splines

Algorithmic Implementation Experiments

Comparative Analysis

Conclusions

Future Works

References

Agrawal, Nitin1,2, Gawali, Deepak2,3, Nataraj S.V. , Paluri2
1Cluster Innovation Centre, University of Delhi, India

2Indian Institute of Technology, Bombay, India
3Vidyavardhini's College of Engineering and Technology, Maharashtra, India

contact Name

Nitin Agrawal: nitin.cic@gmail.com
Poster

P5184

Category: Developer - Tools & Libraries - DT02

