
CUDA Implementation 
 
  Transfer data  from global to shared memory into blocks (Every 
block of threads copies the corresponding chunk of input data into its 
shared memory): 

 
 

 
 
Fig. 2: Assignment of blocks to 
the image input array. 

 

DWT (Discrete Wavelet Transform) 
 
DWT is a wavelet transformation method in which the pixels of an 
image, as wavelets, are discretely sampled. DWT is used in many 
research and industrial areas: 
 image compression algorithms such as JPEG 2000 and CCSDS-122.0-

B-1 
 biomedical applications for edge detection 
 digital watermarking 

 
DWT performs a three-level, two-dimensional (2D) wavelet 
transformation and splits the image into ten subareas (sub-bands)  
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: DWT separates the image in 10 sub-bands (upper) and operates in three levels (lower). 

 
The image pixels are filtered into two sets of integer wavelet 
coefficients: set D which represents the high frequency of a pixel and 
set C which represents the low frequency. 
 
 
 
 
 
 
                              

Implementation and Evaluation of DWT on  
Contemporary NVIDIA GPUs and x86 CPUs 

Vasilis Dimitsas1, Olympia Kremmyda 1, Dimitris Gizopoulos 1, Anastasis Keliris 2, Michail Maniatakos 3 
1 University of Athens, 2 New York University Polytechnic School of Engineering, 3 New York University Abu Dhabi 

 
  Extend the boundary pixels (To eliminate time consuming calculations 
for the pixels at the boundary of the image which require values for pixels 
“out” of the image)  
 
 
 
 
 
 
 
 
 
 Calculation: Each thread ti focuses on a central pixel x2i and uses six more 
pixels (x2i–4, x2i–2, x2i–1 and x2i+1, x2i+2, x2i+4) for the calculation of the 
corresponding coefficients.  

 
 DWT operation includes two steps:  

row transform  
column transform 

 
 For column transform the same steps are followed except that the 
calculations are done column-wise.  

shared memory is used in order to efficiently coalesce global 
memory accesses, while processing the image in columns. 

 

Original Image

LL1 HL1

LH1 HH1

HL1

LH1 HH1

LL2 HL2

LH2 HH2

HL1

LH1 HH1

HL2

LH2 HH2

LL3 HL3

LH3 HH3

 
DWT Level 1

DWT Level 2

DWT Level 3

Image 
rows

LL1

LL2

HL1, LH1, HH1

HL2, LH2, HH2

LL3, HL3, LH3, HH3

D
W

T 
C

oe
ffi

ci
en

ts
 

B
uf

fe
r

 𝐷𝐷 𝑥𝑥 −   𝑥𝑥 𝑥𝑥  −  𝑥𝑥 𝑥𝑥    

𝐷𝐷𝑗𝑗 𝑥𝑥 𝑗𝑗 −   𝑥𝑥 𝑗𝑗 𝑥𝑥 𝑗𝑗  −  𝑥𝑥 𝑗𝑗− 𝑥𝑥 𝑗𝑗    

𝐷𝐷𝑁𝑁− 𝑥𝑥 𝑁𝑁− −   𝑥𝑥 𝑁𝑁− 𝑥𝑥 𝑁𝑁−  −  𝑥𝑥 𝑁𝑁− 𝑥𝑥 𝑁𝑁−    

𝐷𝐷𝑁𝑁− 𝑥𝑥 𝑁𝑁− −  𝑥𝑥 𝑁𝑁− − 𝑥𝑥 𝑁𝑁−   

 𝐶𝐶 𝑥𝑥 −  − 𝐷𝐷   

𝐶𝐶𝑗𝑗 𝑥𝑥 𝑗𝑗 −  −
𝐷𝐷𝑗𝑗− 𝐷𝐷𝑗𝑗   

 Block 0 (5x5) Block 1 (5x5)

0 1 2 3 23 24 25 9926

Input Data

98

 

4 3 2 1 0 1 2 3 4 5 6 7 8

14 13 12 11 10 11 12 13 14 15 16 17 18

24 23 22 21 20 21 22 23 24 25 26 27 28

34 33 32 31 30 31 32 33 34 35 36 37 38

44 43 42 41 40 41 42 43 44 45 46 47 48

Results 
 
The experiments of the DWT were conducted in three  different systems. 
 
The measurements focus on the raw processing time of each hardware 
component i.e. in case of GPU we measure the kernel execution time and 
for CPUs we take into consideration the DWT processing time.  

System 1 System 2 System 3 

C
P

U
 

AMD PhenomTM II X4 
965  

4 cores, @ 3.4GHz, 
45nm  

(Released November 
2009) 

8 GB main memory 

Intel® CoreTM i7-
3970X 

6 cores, @ 3.50GHz, 
32nm 

(Released November 
2012) 

 
32 GB main memory 

Intel® Xeon®  
E5-2680  

8 cores @ 2.7GHz, 
32nm 

(Released March 
2012) 

32 GB main memory 

G
P

U
/C

op
ro

ce
ss

or
 

NVIDIA Tesla C2070  
(Fermi architecture),  
6GB GDDR5 RAM, 

448 CUDA cores, 
40nm 

(Released  
July 2010)  

NVIDIA Tesla K20  
(Kepler architecture),  
5GB GDDR5 RAM, 
2496 CUDA cores, 

28nm 
(Released November 

2012)  

Intel® Xeon Phi™ 
Coprocessor 5110P 
(8GB Memory, 60 

cores @ 1.053 GHz) 
22nm 

(Released November 
2012) 

To optimize the program on multicore CPUs we first analyze and optimize 
the serial execution of the program and then identify sections that can 
be executed in parallel. For the parallel execution we investigate 
performance gains using both OpenMP and CilkPlus. 
The results in Table 2 below represent the best cases of the DWT 
algorithm execution across the various platforms. 

 

 256 x 256 512 x 512 1024 x 1024 2048 x 2048 4096 x 4096 8192 x 8192 

Phenom 1.673 6.88 32.038 144.38 577.239 2586.208 
i7 1.1375 3.7565 20.6411 72.3541 270.02 951.019 

E5 1.0213 3.4224 14.4339 54.9691 234.315 953.823 
Fermi 0.19 0.5 1.19 3.88 14.58 58.35 

Kepler 0.19 0.45 1.03 3.14 11.66 45.88 
Xeon Phi 6.63 43.92 235.5 749.17 1806.4 4128.95 

TABLE 2: THE EXECUTION TIMES (IN MS) OF THE DWT ALGORITHM IN EVERY PROCESSING COMPONENT. 
 

Fig. 4: The speedups of the GPUs against the CPUs for the DWT algorithm execution 
(CPU/GPU execution times ratio). 

Fig. 5: GPUs vs. Intel Xeon Phi overall speedup diagram (Phi/GPU execution times ratio). 

8.71
13.60

26.85

37.16
39.59

44.32

15.09

31.01

45.86
49.48

56.36

5.92

17.30 18.52
16.30

8.24

19.98

22.98 23.15
20.73

7.11

13.55 14.26 12.83 11.86

17.60

16.04 15.08

0

10

20

30

40

50

60

256 x 256 512 x 512 1024 x 1024 2048 x 2048 4096 x 4096 8192 x 8192

Sp
ee

d 
up

Image Sizes

Fermi vs Phenom
Kepler vs Phenom
Fermi vs i7
Kepler vs i7
Fermi vs E5
Kepler vs E5

34.53

86.80

197.40 192.84

123.90

70.76

33.32

96.32

227.98 237.98

154.86

89.98

0

50

100

150

200

250

256 x 256 512 x 512 1024 x 1024 2048 x 2048 4096 x 4096 8192 x 8192

Sp
ee

d 
up

Image Size

Fermi vs Intel Xeon Phi

Kepler vs Intel Xeon Phi

References 
 
1. Image Data Compression CCSDS-120.1-G-1. 2007. 

http://public.ccsds.org/publications/archive/120x1g1e2.pdf  
2. CCSDS Image Data Compression Implementation. Nebraska – Lincoln University. 

http://hyperspectral.unl.edu/index.html  
3. Sanders J., E.Kandrot, CUDA by Example – An Introduction to General-Purpose 

GPU Programming. Addison-Wesley, 2010.  
4. NVIDIA CUDA HTTP://WWW.NVIDIA.COM/OBJECT/CUDA_HOME_NEW.HTML 

Fig. 3: Shared memory layout after 
the transfer and the extension of the 
chunk of data of block 0 (for the row 
processing part of DWT). The 
numbers in the cells correspond to 
the original location of pixels into the 
input array. 

TABLE 1: CONFIGURATIONS OF THE THREE EVALUATION SYSTEMS AND THEIR RELEASE DATES 
 

contact Name 

Vasilis Dimitsas: vdimi@di.uoa.gr
Poster 

P5186

Category: Developer - Algorithms - DA07


