CATEGORY: LIFE & MATERIAL SCIENCE - LS03
G P TECHNOLOGY
CONFERENCE

Modeling X-Ray Diffractometer Device Function

Using MonteCarlo Ray Tracing and CUDA

UAI\LJJ[}/(?&S([)?AA)\DD[EAI\\S\:E%\(]?% X1m Bokhimi and Carlos Gonzalez INSTITUTO DE FISICA

o o " ‘ .
EJ ecutlon FlOW e e s —— The quantitative analysis of X-ray diffraction patterns provides information about the atom distribution PrEhm],nary Resu_lts
Geametry| Primary Sample xmmm - of the different phases in a sample that helps to understand its macroscopic properties. This analysis can
r Bragg-Brentano: 0.040 .| mm be done by refining the crystalline structure of the phases with the Rietveld method. In general, most of

class 1nput geometry {

: R e the X-ray diffraction experiments are performed in a standard laboratory. Therefore, to obtain confident - B A
I geometry type(reflexion, I L High Productivity:

immformation about the phases in the sample from this analysis, i1t is necessary to have a good model for the : ‘ ' o
: transmi§ion : C&}pillarY) ohasn R e experimental a.rrangenIZent, in order to sfparate its contrib)llltion to the diffraZt:ion pattergn, which produces Portgl‘l)li(iiSOf:tware pmVldeS e compact algonthm dﬁSCI'lptIOIl.
| GonlometerRadlgs (radius) I Smehotron e aberrations, from the contribution of the sample, Therefore, there is a need to have open source codes that Ttis su ; orted in a laree varietv of architectures including the newest NVIDIA GPU
| XTRaY—Source ngdth ,Length) | v \' : take this fact into account. In this work we present the advance we have about the development of the code Com eﬁé)‘lje Perfomz;mn?g:e ty 5 .
D1vergepce811t(, ; et R BORO to refine crystalline structures using the Rietveld method. Until now, we have a first final version zAlx)t least ten imes faster tl.lan the aloorithm in CPU. The number of Ravs that
I , DistanceToAxialAxis, W, L) ' e @ A = for the part of the code that models the experimental arrangement, which was done using the ray-tracing can be oenerated depends on the (g}PU | »
PrunarySQller (angl? I A,B) RS = 0.4 method, The software was written, for the Qt platform, in C++, OpenGL and CUDA for CPU clusters and S e .
I SamPle (Dlam?ter : TthkneSS l W,L) I s . GPUs; it runs in Linux and OS X. In the plan for the development of the BORO code, it will be connected
I Antlsca‘l_:terlngSlltg : I ; IIL} | | = with software that models the atomic distributions of small and large atomic clusters, amorphous or
Secondgggzrllizf'?zliﬁlzi’g; L) e Lo “mmgm o crystalline, and with software that models diffraction patterns using the Debye Function. 1000
I Detector (Width, Length, I 6000 e m CPU
| ArrayWidth) I e — B GPU
Monocromator (inprimary Besm: ® A5 () g Oeg comelry Lonstruction
I Spectrometer Radius | I o f The optical elements of the diffractometer must be defined to calculate the device profile function. 200
I Monocromator Angle) I e L Optical geometry (Bragg-Brentano, Debye-Scherrer, transmssion). 0
I Lpsm": o T | v i The followmng parameters correspond to a theta-theta Bragg-Brentano reflecton geometry. 8
Lo ol | RSSO e S Gontometer radius.
B Divergence slit: width, length, and position relative to axial axis. 10
— e e T — e e e e e T — — — — — Primary Soller: distance between plates and their length, or, its axial divergence angle.

Sample: equatonal and axial dimensions, or, diameter.

Antiscattermg sht: width, length, and position relative to axial axas.

Detector sht: width and length. 1
Detector dmensions: zero, one or two dimensional.

cuRand: pseudorandom numbers of the Mersenne Twister algorithm.

foreach g in (N-angles) {
1 = blockIdx * blockDim + threadIdx;

RayIni[1] = cuRandMakeRay(goniomRand, DivSlitRand, PrimSoller, ...) Monochromator (if it 1s present), spectrometer diameter, monochromator angle.
if(RayIni[i] == SUCCESS)

RayOut[i] = cuRandMakeRay(AntiScateringSlit,SecSoller,Detector,... For each theta angle, a large number of random events are computed n parallel as lo“ows: 0

i
| e
if (RayOut[i] == SUCCESS) ({ I A random position 1s generated at the area of the X-ray source 10 10° 106 10 108 10° 10
)

makeBragg(RayIni[i],RayOut[1i], deltaTwoTheta[1]) A random position 1s generated at the divergence shit along the with dimension. N-Ray
Intensity[deltaTwoTheta[1]]++ A random position 1s generated at the primary Soller along the axial axis.

SaveIntensityFile(deltaTwoTheta[1], Intensity[i1]) With these random positions a ray path 1s generated.

We tested our code using Nvidia GT Force 755M, compared to the sequential implementation
running on a intel 17 CPU at 24 GHz. The speed increase 1s up tol0 times, depending on the

The set of the rays reaching the sample define the true area. .
} LT e VO N o o G N T T g e N Then, random bosiﬁonfﬁenemtedi the area defmed by the detector sht. g’ll)“% ClOCéPa[r}d lt?i memory. For example, the GPU'Tesla K20 was 20% faster than the
[f the detector 1 one dimensional, a random position 1s also generated along the one-dimension., OICe ,and can generafe more rays.
A random position 1 generated at the secondary Soller along the axial axs,
A random position 1s generated m the area defned by the antiscattenng sht.
With all these positons in the secondary optic a ray 1s traced.
It 1t falls on the true area of the sample, a true event 1s defmed.
Bragg Condition
Future Work
51000 , | — For each true event, the Bragg angle 20, defimed between the primary and secondary ray paths, is computed.
two theta = 120.0 | ' class printGraphs { I The randomness of the events generates a dispersion of 20 angles, which depends on the theta angle of nterest and the
| | setPipe(gnuplot | canvas | OpenGL) dmensions of the optical components. : . % 5
30000}- : J I setSettings(...) | Alter having reached a predetermumed number of true events, or the maximum number of rays, the random process K utu{)(;htmnnﬁ Of(‘iﬂletaﬁ)jonetd dl.]lCat;On g(fé t&%}% Usage of the gPU
g : I oIt % = two. theta, I P T capa ty ana adaptatuon (o artierent muit- S ENVIIONIMEN(s.
S | | i y = Counts; voa) CVICC 1 TOILC :
10000}- : ; I freeAll(all Memory...) I Finally, we have a representation of the device profile as a collection of noisy pomts. This give an effective and low paramet- Impmvement the kernels m the GPU
: I } I tic representation of the samples difraction function.
-0.1 20.05 0.0 0.05 5.1 [aaa 2 oy g Yot
o e e Dividing parallel tasks amount the number and type of GPUs.
| two theta = 80.0 I two theta = 10.0 ' |
b | [b | | " || Lablonsks, Jagodansks and Payek., Phys. Ser, T156 (2013) pp.1-3 \tﬁ]g élfen\’vc(%gl?nne gn a better characterization of the Optlcal geometry of
3 | - 3 | : 2] G.]. Ward, K. M. Rubmstemn and R, D). Clear,, SIGGRAPH Comput. Graph. Vol.22, (1998) pp.83-Y2 ‘ :
i | | e | |) 13] J. Bergmann and R. Kleeberg,,] Appl. Cryst. volad, (2001) pp. 16-19
- : 4] Young and Wiles, J. Appl. Cryst., 15 (1982) pp. 430438
T BB) e i delta two theta 10,0 g 15 Aula, T. and Lame S. In Proceedings of High-Performance Graphics. (2009), ppl 4149

