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Sample: equatonal and axial dimensions, or, diameter.

Antiscattermg sht: width, length, and position relative to axial axas.

Detector sht: width and length. 1
Detector dmensions: zero, one or two dimensional.

cuRand: pseudorandom numbers of the Mersenne Twister algorithm.

foreach g in (N-angles) {
1 = blockIdx * blockDim + threadIdx;

RayIni[1] = cuRandMakeRay(goniomRand, DivSlitRand, PrimSoller, ...) Monochromator (if it 1s present), spectrometer diameter, monochromator angle.
if( RayIni[i] == SUCCESS)

RayOut[i] = cuRandMakeRay(AntiScateringSlit,SecSoller,Detector,... For each theta angle, a large number of random events are computed n parallel as lo“ows: 0
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if (RayOut[i] == SUCCESS) ({ I A random position 1s generated at the area of the X-ray source 10 10° 106 10 108 10° 10
)

makeBragg(RayIni[i],RayOut[1i], deltaTwoTheta[1]) A random position 1s generated at the divergence shit along the with dimension. N-Ray
Intensity[deltaTwoTheta[1]]++ A random position 1s generated at the primary Soller along the axial axis.

SaveIntensityFile(deltaTwoTheta[1], Intensity[i1]) With these random positions a ray path 1s generated.

We tested our code using Nvidia GT Force 755M, compared to the sequential implementation
running on a intel 17 CPU at 24 GHz. The speed increase 1s up tol0 times, depending on the
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A random position 1 generated at the secondary Soller along the axial axs,
A random position 1s generated m the area defned by the antiscattenng sht.
With all these positons in the secondary optic a ray 1s traced.
It 1t falls on the true area of the sample, a true event 1s defmed.
Bragg Condition
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