CATEGORY: AUTOMOTIVE - AU02

P5192

Leonardo Christino: leomilho@icmc.usp.br

GPUService GPU Acceleration of Robotic Services: Real Time 3D Point Cloud Processing Leonardo Milhomem Franco Christino, Dr. Fernando Santos Osório

Motivation

- Three-dimensional sensors data processing applied to mobile robotics (e.g. Velodyne LIDAR)
- Usage of ROS operating systems to divide complex projects in smaller modules communicating by net packets (in this project modules are called services)
- Services: 3D point clouds pre-processing, segmentation, planar zones detection (ground, roads), and detection of elements of interest.
- Main Application: Services for a self-driving car, forcing to approach a system for real-time processing
- Equipament: Low-Powered Nvidia GPU (620 GT)

Velodyne (HDL-32) Sensor

Omnidirectional multilayer

LIDAR sensor

- 360 degrees and 32 layers
- Output: XYZIR pointcloud (XYZ coord.; I: intensity; R: ring)
- +/- 2cm Precision
- Up to 70,000 points per frame at 10Hz 100m Range

Problem: Unorganized Sparse Data Array Solution: Parallel Array organizer and filler

- Fill a 32x1800 matrix (size decided by number of blocks and the sensor data sets)
- This helps hash access of other parallel services

Conclusion & Future

Different techniques tested

More techiques to be added in future services

Throughput not compatible for one kernel per service

By far, the memory copy between device and host is the biggest time consuming instruction Use a single kernel for many services in sequence

- Tegra (Jetson)

- http://www.lrm.icmc.usp.br/
- http://www.lrm.icmc.usp.br/carina/
- http://www.lrm.icmc.usp.br/en/?page=projetos
- <u>http://www.velodynelidar.com/lidar/lidar.aspx</u>

Biggest I/O blocking and data heavy services in Carina Project (Autonomus Driving Car)

Now done in GPU, leaving CPU for other algorithms More GPU types to be used, such as embedded

GPU TECHNOLOGY CONFERENCE