CATEGORY: AUTOMOTIVE - AU02
‘ GP TECHNOLOGY
CONFERENCE

ICMCe..

SAO CARLOS

G P U Se rVi Ce nttp://www.lrm.icmc.usp.

nttp://www.lrm.icmc.usp.br/carina/

GPU Acceleration of Robotic Services: Real Time 3D Point Cloud Processing nttp://www.Irm.icme.usp.br/en/?page=projetos
: _ , . ttp:// velodynelidar.com/lidar/lidar.
Leonardo Milhomem Franco Christino, Dr. Fernando Santos Osdrio e

Motivation Preprocessing Planar Zones Segmentation

Three-dimensional sensors data processing applied to

mobile robotics (e.g. Velodyne LIDAR) Rearrangement of Sensor data P rOCESS| ng

Usage of ROS operating systems to divide complex * Input: Sparse ur?organized array |
projects in smaller modules communicating by net * Output: ROS PointCloud2 data type Dense Matrix Many approaches tested. Best:

packets (in this project modules are called services) Structure (32x1800) * Hip between radials/heigth

Services: 3D point clouds pre-processing, * Median Filter 1x5 for noise reduction

segmentation, planar zones detection (ground, * Threashold classitication
roads), and detection of elements of interest.

Main Application: Services for a self-driving car,

forcing to approach a system for real-time processing

Equipament: Low-Powered Nvidia GPU (620 GT)

Velodyne (HDL-32) Sensor — Rergent ime

o)
o

Omnidirectional multilayer

LIDAR sensor

* 360 degrees and 32 layers
e Qutput: XYZIR pointcloud
(XYZ coord.; I: intensity; R: ring)
e +/-2cm Precision
« Upto 70,000 points per frame
at 10Hz 100m Range
Problem: Unorganized Sparse Data Array

Solution: Parallel Array organizer and filler od a2 2 2 8l 3 2| 7 9 7
* Fill a 32x1800 matrix (size decided by number of

Real Id (y, 1,1 1,2 1,3 1,14 1,16 1,17 1,6 1,7 1,8 ... 1,32 2,1 2,2 ..
blocks and the sensor data sets)

* This helps hash access of other parallel services

-
-'I.a

MWMM _Python Planar Zones Segmentation Times

C
DAl b A ML m —GPU

Time (ms)
ND
- o

-

No. of
Frames

1
38

/5
Time(ms)

P

Conclusion & Futu re Throughput not compatible for one kernel per service Biggest 1/0 blocking and data heavy services in
Carina Project (Autonomus Driving Car)
* Now done in GPU, leaving CPU for other algorithms
* More GPU types to be used, such as embedded
Tegra (Jetson)

Different techniques tested e By far, the memory copy between device and host
 More techiques to be added Is the biggest time consuming instruction
in future services Use a single kernel for many services in sequence

