
Vertex Cover 

Given a graph G, a vertex cover of G is a vertex  subset C  such that every edge of G is incident to 

a vertex in C. Given a graph G and a positive integer k, determining whether a vertex cover of at 

most k vertices is one of Karp's 21 NP-complete problems (1972). Within the  set of all vertex     

covers, there exists a minimum vertex cover  such that the cardinality of this cover is less than or 

equal to the cardinality of all other vertex covers of G. Currently, the best exact algorithm to find a        

minimum vertex cover is of complexity O(1.2018n), which is highly impractical for large datasets. 

 

Parameterized Vertex Cover 

From the perspective of parameterized complexity, the parameterized vertex cover problem is to 

find a vertex cover of at most k vertices if  such a vertex cover exists or to return ‘No’ otherwise. 

The current fastest algorithm for the parameterized problem is of complexity O(1.2738k+n). 

 

Application 

An application of the parameterized problem is to  solve the phylogeny problem. Data from NCBI 

is downloaded and preprocessed to generate graphs. Those graphs have up to 1000 vertices. The 

range of k is from 883 to 987. Algorithms have been implemented on clusters to find vertex cover 

of at most k vertices for those graphs. 

 

GPGPU Implementation 

GPGPUs are  successful in improving performance of programs and algorithms. However, graph 

algorithms are not easily implemented on GPGPUs with  significant performance  speedup. We 

are investigating the challenges and opportunities for implementing those algorithms on GPGPUs 

for the parameterized vertex cover problem. Such investigations will result in new perspectives and 

methods on algorithm engineering of complex algorithms. 

 

Hardware 

 

 

 

The Vertex Cover Problem 

 Classical NP-complete problem (one of the twenty-one Karp’s NP-complete problems) 

 

 

 

 

Fixed-Parameter Tractable Algorithm (FPT) 

 Parameter k (positive integer) and input  size n 

 Determine whether a vertex cover of at most k vertices exists or not in time f(k)p(n) where f(k) is         
independent of n and p(n) is polynomial of n 

Our Approach 

 Distribute and  synchronize computation between CPU and GPU (graph decomposition) 

 Synchronize threads in a block  

 Apply reduction rules to vertices with degrees greater than k and vertices with degree one 

Results 

 Tested on graphs created from biological data 

 Current implementation is up to 11 times faster than serial program 

Introduction 

 

Results & Conclusions 

Purpose & Application 

Multiple GPU 

 Our current experiments have not shown speedup when two GPUs are used. 

MPI + GPU 

 For difficult graphs, multiple CPUs + GPUs are necessary 

 Load balancing is very important 

Redesign of Algorithm 

 Important to use threads in a block more efficiently 

Dynamic Configuration 

 Our profiling results show that for some graphs, the bottleneck is on CPU, while for some other graphs, the bottleneck is on GPU 

 Different input graphs demand different configurations for optimal performance. That is, for different graphs, the vertex threshold and 

number of blocks likely have different optimal values to achieve maximized speedup. 

 

Future Research 

Finding Vertex Cover: Acceleration via CUDA 

Techniques 
          

 

Distribution of Computation 

 Important for performance 

 Controlled by thresholds 

 Non-negative integer t (now is 80). 

 Subgraphs with no more than t vertices are sent to GPU for processing 

 Adjustable by input to control the distribution of computation 

 For optimal performance, t is different for different input graphs 

Synchronization of Computation 

 Copy subgraphs to GPU 

 CUDA memory asynchronous copy on separate stream 

 Concurrent kernel execution on separate stream 

 Poll GPU states 

 Pinned mapped memory 

 Synchronization among threads in a block 

 Shared memory 
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Figure 4 — Dis tribution and Synchronization of Computation 

Branching Process 

 Pick a vertex v (max degree) 

 Two branches 

 Put v in vertex cover (left branch) 

 Put v’s neighbors in vertex cover (right branch) 

 Branch recursively until 

 a vertex cover of at most k vertices is found 

 or no such vertex covers exist 

 Imbalanced Search Tree 

 

|G’| = |G| – 1
k’= k - 1

|G’| = |G| - |N| - 1
k’ = k - |N|

on CPU

on GPU

Figure 2 — Branch Searching Process 

Reduction Rules 

 No branching for vertices with: 

 degree greater than k 

 degree one 

 degree two if max degree is two 

CPU Program 

 Configurable number of blocks 

 Around 90 

 Configurable number of threads per block 

 32 

 Degree Arrays per block are in shared 

memory 

 

Figure 3a — CPU Program Flow Chart Figure 3b — GPU Program Flow Chart 

GPU Program 

 No dynamic change of input 

graph 

 Use degree arrays and original 

input graph to infer subgraph 

information 

 Adopt reduction rules 

 

Figure 1— Examples of Vertex Covers 

Table 1 — Program Running Times 

Graph-k Serial (s) CPU+GPU (s) 

es30-k981 11639.52 1132.826 
es30-k982 3489.943 335.3726 
es35-k983 3132.381 328.5616 
es35-k984 325.9834 33.4564 
es40-k984 847.3066 75.6706 
es40-k985 112.8362 10.6178 
es45-k986 295.173 42.8384 
es45-k987 6.5156 1.3328 
fo30-k982 31225.86 2704.92 
fo30-k983 1777.257 164.0328 
fo35-k984 7088.113 806.7852 
fo35-k985  276.9754 31.6658 
fo40-k985 2202.807 238.1776 

Graph-k Serial (s) CPU+GPU (s) 

fo40-k986 156.3932 14.2208 
fo45-k986 573.7118 65.595 
fo45-k987 44.3914 6.3102 
in30-k883 1569.43 177.0106 
in30-k884 365.643 41.7094 
in35-k884 425.896 40.842 
in35-k885 403.413 36.3172 
in40-k886 156.062 22.4966 
in40-k887 16.109 3.057 
in45-k887 74.8566 14.8912 
in45-k888 0.9754 0.5964 

Configurations 

 Vertex threshold: 90 

 Number of blocks on GPU: 80 

Summary 

 For 9 out of 26 input graphs, the speed up factor is greater than 10 

 For 22 out of 26 input graphs, our program has speed up factor of 

more than 6 

 Only one graph has speedup factor less than 1. 

Figure 5 — Speedup of CPU+GPU Program Over Serial Program 

  CPU GPU 

  Intel E5-2670 v2 Nvidia Telsa K20m 
Number of Cores 10 2496 

Peak Performance 400 GFLOPS 3.52 TFLOPS 

Memory 64 GB 5 GB 
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