
MemGuard: A Memory Bandwidth Management Framework
for Real-Time Applications on Multicore Platforms

Heechul Yun (heechul.yun@ku.edu), Rodolfo Pellizzoni, Marco Caccamo, Lui Sha

Introduction

Multicore architecture is increasingly being adopted to many modern
cyber-physical systems (CPS)—such as autonomous cars and unmanned
aerial vehicles (UAVs)—that require high computing performance to
process the vast amount of data flowing from a variety of sensors in
real-time (e.g., obstacle detection and avoidance and real-time motion
planning).

Challenges

Designing critical real-time applications on multicore architecture is,
however, challenging because contention in the shared memory
resources (e.g., memory bandwidth and cache space) can significantly
alter the applications’ timing characteristics. Recent trend toward
heterogeneous multicore architecture---in which CPU and GPU cores
share part of the memory controller---will likely cause even more
contention because GPU tasks typically have high memory bandwidth
demands. For example, memory intensive batch jobs running on CPU
cores can cause significant delays to important real-time GPU tasks
running in parallel, or vice-versa.

Unfortunately, today’s real-time application developers have no good
ways to address this problem. In traditional single core architecture,
one can easily improve real-time performance by, for example,
increasing the priorities of important real-time tasks. Raising task
priorities, however, has no impact when tasks are running on different
cores in parallel. This is a serious problem especially for safety-critical
systems that need certification [1].

In this project, we present a software framework to mitigate the
memory contention problem in heterogeneous multicore architecture.

The Framework

We developed a software framework, called MemGuard, to mitigate
the memory bandwidth contention problem. The following figure
shows the overall architecture of the system. The key idea is to
periodically monitor and regulate the memory access rate of each core
using per-core hardware performance counters (PMC) at the kernel
scheduler. If, for example, a group of tasks generates too much memory
traffic and delays the critical real-time tasks, MemGuard can regulate
the memory access rates of the cores running the offending tasks.

The work is supported in part by NSF CNS 1302563.

[1] Certification Authorities Software Team (CAST). Position Paper CAST-
32: Multi-core Processors (Rev 0). Technical report, Federal Aviation
Administration (FAA), May 2014.
[2] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard: Memory
Bandwidth Reservation System for Efficient Performance Isolation in Multi-core
Platforms. IEEE Intl. Conference on Real-Time and Embedded Technology and
Applications Symposium (RTAS), IEEE, 2013
[3] H. Yun, S. Gondi, S. Biswas. Protecting Memory Performance Critical Sections
in Soft Real-Time Applications, Technical Report, 2015
[4] https://github.com/heechul/memguard

 (a) solo (b) co-run w/o MemGuard (c) co-run w/ MemGuard

Case study: real-time face detection in the presence of
memory intensive co-runners

In this case study, our goal is to protect real-time performance of a face
detection algorithm (from OpenCV package [3]) in the presence of
memory intensive co-runners on the Nvidia Tegra K1 multicore
platform (4 ARM CPU cores + 192 GPU cores). The face detector is
single threaded w.r.t. CPU but uses GPU cores to accelerate
performance. We measured performance (frames/sec) of the face
detector first alone in isolation—Figure 3(a); with three memory
intensive co-runners—Figure 3(b); and with the co-runners that are
bandwidth regulated using MemGuard—Figure 3(c). As shown in Figure
3(b), co-scheduling memory intensive co-runners significantly
decreases the performance of the algorithm—from 8.6 to 1.8 fps on
average. In contrast, Figure 3(c) shows that MemGuard significantly
improves the performance—to 5.9 fps on average—by regulating the
co-runners’ memory access rates.

This results show that software-based memory bandwidth control can
be effective in improving real-time performance of the face-detection
software, which heavily utilizes GPU cores.

Face-detection performance comparison on Nvidia Tegra K1: (a) shows
the performance of the face detection algorithm running alone on the
system; (b) is when we launched three memory intensive co-runners;
(c) is when we enabled MemGuard.

Ongoing Work

We are currently developing memory bandwidth management
middleware that allow more fine-grained memory b/w control by the
programmers. Our preliminary study shows that selectively applying
bandwidth regulation to critical memory intensive code sections of
real-time applications, which we call memory performance critical
sections, can substantially improve real-time performance while
minimizing impacts on the overall throughput. Our preliminary results
on this extension may be available in [2].

Also, we are investigating mechanisms to regulate GPU’s memory
bandwidth usages. This is especially important for highly integrated
platforms where CPU and GPU cores share memory subsystems---e.g.,
the Tegra TK1---as memory bandwidth becomes an even more serious
bottleneck.

Control Interface

We currently provide core-level, task-level, and source-code level
bandwidth control interfaces. The following shows an example of core-
level bandwidth assignment. More details can be found in [4]

echo mb 900 100 100 100 >
/sys/kernel/debug/memguard/limit
  assign 900,100,100,100 MB/s for Core 0,1,2,3

contact Name

Heechul Yun: heechul.yun@ku.edu
Poster

P5208

Category: Embedded Systems - ES02

