CATEGORY: MEDICAL IMAGING - MI04 CONTACT NAME POSTER Tianyu Liu: liut10@rpi.edu P5210



**<u>Tianyu Liu, Noah Wolfe, Christopher D. Carothers, X. George Xu</u>** Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180, USA Computer Science Department, Rensselaer Polytechnic Institute, Troy, New York 12180, USA Website: http://RRMDG.rpi.edu Email: xug2@rpi.edu

| ryance of ARCHER for a whole-body CT scan simulationardwareTime [min]SpeedupArdwareTime [min]SpeedupX5650 CPU476.355402X5650 CPU11.22BaselineE5-2697 v3 CPU (Haswell)3.513.20 ×BaselineM2090 GPU2.085.40 ×1.69 ×M2090 GPUS0.3730.23 ×9.44 ×K20 GPU1.756.40 ×2.00 ×K40 GPU1.0310.89 ×3.40 ×5110P MIC3.333.37 ×1.05 ×surrent execution implementation. Achieved efficiency = the performance (number of particles simulated per second) to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e (assuming ideal load balancing)<br>Achieved efficiency<br>10P MIC + M2090 GPU 82.0%<br>10P MIC + K40 GPU 84.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| profiling of ARCHER for an abdominal CT scan simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Average Energy<br>rdware power draw consumption<br>[Watt] [Joule] Improve Improve<br>ment ment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 550 CPU       129       9675       Baseline         2697 v3 CPU       144.82       3376.85       2.87×       Baseline         090 GPU       137.04       2037.81       4.75×       1.66×         0 GPU       98.69       1274.72       7.59×       2.65×         0 GPU       121.93       909.28       10.64×       3.71×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0P MIC 149.78 3406.03 2.84× 0.99×<br>oy dosimetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>of ARCHER matches well with GEANT4 (left). ARCHER is bly faster in producing clinically desired isodose maps (right)</li> <li>- PTV GEANT4</li> <li>Bladder GEANT4</li> <li>Ring GEANT4</li> <li>Rectum GEANT4</li> <li>Bladder ARCHER</li> <li>Bladd</li></ul> |
| rdware Frostate Lung [min] neck Speedup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| [min]       [min]         5-2620 CPU       729       507       876       Baseline         2090 GPU       63.4       49.8       79.1       10.18~11.50 ×         2090 GPUs       10.9       8.9       13.4       56.97~66.88 ×         20 GPU       44.7       35.6       59.4       14.24~16.31 ×         40 GPU       36       29.9       44.2       16.96~20.25 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## **Development of a Medical Physics Monte Carlo Radiation Transport Code ARCHER**



# Applications and Results

### Radiation shielding design **III**.

| Perfo | rmance of Al | RCHER ir | n solving a | radiatio |
|-------|--------------|----------|-------------|----------|
|       |              |          |             |          |

| Code       | Hardware    | Time |
|------------|-------------|------|
| MCNPX      | 1 E5507 CPU | 36.6 |
| ARCHER-CPU | 1 E5507 CPU | 4.47 |
| ARCHER-GPU | 1 K20 GPU   | 0.7  |
|            |             |      |

### IV. XSBench

- XSBench is a proxy neutronics application of Department Of Energy's (DOE), developed by Argonne National Laboratory (ANL) It models the macroscopic cross-section construction

| the most time-consuming subroutine in Monte Carlo reactor criticality calculation.                                                |                |                              |            |               |          |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------|------------|---------------|----------|--|--|--|
| The optimization techniques of XSBench are applicable to                                                                          |                |                              |            |               |          |  |  |  |
| photon and electron transport code.                                                                                               |                |                              |            |               |          |  |  |  |
| <ul> <li>Scudiero (Nvidia) [1] optimized XSBench to the CUDA GPU</li> </ul>                                                       |                |                              |            |               |          |  |  |  |
| platform.                                                                                                                         |                |                              |            |               |          |  |  |  |
| We optimized XSBench to CPU, GPU and MIC platforms.                                                                               |                |                              |            |               |          |  |  |  |
| Performance comparison of original and optimized XSBench on different computing platforms. H-M large problem is used in the test. |                |                              |            |               |          |  |  |  |
| Processor                                                                                                                         | Code           | Performance<br>[Lookups/sec] | Speedup    | Speedup       | Speedup  |  |  |  |
| Westmere                                                                                                                          | CPU (original) | 1,297,450                    | Baseline   |               |          |  |  |  |
|                                                                                                                                   | CPU (tuned)    | 1,602,893                    | 1.24×      | Baseline      |          |  |  |  |
| Haswoll                                                                                                                           | CPU (original) | 3,047,600                    | 2.35×      |               |          |  |  |  |
|                                                                                                                                   | CPU (tuned)    | 4,678,024                    | 3.61×      | $2.92 \times$ | Baseline |  |  |  |
| Knights Corner                                                                                                                    | MIC (original) | 3,206,490                    | 2.47 	imes |               |          |  |  |  |
| ningins comer                                                                                                                     | MIC (tuned)    | 7,405,966                    | 5.71×      | <b>4.62</b> × | 1.58×    |  |  |  |
| Kepler                                                                                                                            | GPU (original) | 1,531,614                    | 1.18×      |               |          |  |  |  |
|                                                                                                                                   | GPU (tuned)    | 10,214,464                   | 7.87×      | 6.37×         | 2.18×    |  |  |  |
|                                                                                                                                   |                |                              |            |               |          |  |  |  |

# Conclusion

- ARCHER is an accurate and fast parallel code for Monte Carlo simulation, able to execute on the CPU, GPU and MIC.
- In our test, Intel 14-core Haswell CPU significantly **| II**. outperforms the Westmere ancestor, being comparable to Intel 60-core KNC MIC coprocessor. Nvidia Kepler GPUs on the other hand, outperform both the Haswell and KNC processors.

[1] T. Scudiero, "Monte Carlo neutron transport: simulating nuclear reactions one neutron at a time," GPU Technology Conference (GTC) 2014, Nvidia, 2014.



**GPUTECHNOLOGY** CONFERENCE

Baseline 6.36×

on shielding design problem Speedup [min]

