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Figure 1: Diagram of the breeding design used to create MAGIC 8-way 
intercross in wheat. Genomes of inbred parents are combined through 
multiple generations of intercrossing and selfing to produce homozygous 
offspring with diverse genotypes and phenotypes. 
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Solving billions of small multiple linear algebra problems 

Introduction 
Genetic information is now increasingly available through modern sequencing methods and this data combined with 
specific genetic breeding trials such as the Multiparent advanced generation inter-cross (MAGIC) results in the input 
data for the studies. An R based package (mpMap)1 has been developed for analysis of these studies, including 
detection of associations between traits and genetic markers. The package currently integrates R, C++, and CUDA 
code.  This work extends the package using a pipeline that can solve the many small linear models needed to look at 
the influence of pairwise marker interactions.  

The ability of modern GPUs to operate in parallel on thousands of small matrices has huge potential for genetic analysis in agriculture. We explored this 
potential in a pipeline that incorporates batched versions of cuBLAS operations, matrix multiplication, LU decomposition and inversion and analysis of variance 
for comparison of model efficacy. This pipeline can be applied to detect genetic interactions in multi-parental populations, an analysis which would otherwise be 
extremely time-consuming.  
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Results 
Initial testing of an OpenCL based C · CT implementation showed that occupancy was limited through a lack of shared 
memory used in the developed algorithm and this avenue was discontinued. 
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Table 2: Profile information captured with Nsight 6.0 for batched 
computations of 10,240 models, each model having 64 terms and 300 
individuals.  

Conclusions 
The use of accelerators has not proven to be as advantageous as we would like in terms of throughput of problems. The 
available 16 CPU cores obtained about 2× throughput over a single Kepler K20 GPU and 1.6× over Intel Phi 7120P. 
However, combining all resources in a node more than doubles the throughput of CPU’s alone. 
The cache based architecture of the CPU and Phi accelerator excels at the rapid computation of many small linear algebra 
functions due to the capacity to reuse recently used data from fast cache memory.  
Performance of GPUs on this workload could possibly be improved. Enhancements to the batched cuBLAS Dgemm 
performance over the ~20% theoretical peak achieved would be desirable. Testing of the of the batched DGELS 
procedure available in the CUDA 6.5 is being undertaken. Integration of a batched Cholesky method for the GPU is also 
being looked into2. The shuffle instruction which is a feature of Kepler class GPUs is being investigated for efficient 
computation of the initial C · CT matrix formation.  
Interfacing the cuBLAS functionality with the OpenCL programming would a welcome addition for enhanced GPU 
programmability. 
The resulting system should enable a comparison of a full sized problem of 60,000 markers and 500 individuals to be 
completed in around 1 hr using 5 nodes of the accelerator cluster. 

Detecting genetic interactions in multi-parental breeding populations. 

Materials/Methods 
The set of transformations that are involved in the linear modelling problem have been implemented using the 
batched BLAS functions from the cuBLAS library combined with some CUDA based programming. The hybrid 
cuBLAS and CUDA kernels are compared to Intel MKL BLAS/Lapack code running on Xeon and Xeon Phi. 

Due to the independence of each model computation, an algorithm was devised where processes are launched in 
an ad-hoc fashion (for example using a PBS array job), and rely on a file based (HDF5) reference system to 
coordinate between launched processes. The HDF5 file stores input and output data and a set of flags that indicate 
if a marker  interaction  needs to be computed, is being computed or has been computed. Access to the file is 
serialised using a file based locking procedure. 

Possible linear correlations between input data columns requires that  the linear algebra routines to report errors 
such as singularity and failures to  invert. In event of a failure a more robust  (and slower) routine (SVD) will be 
invoked. 

 
Hardware Number per node Number of nodes Software 

Intel Xeon (Sandybridge)  
8 cores @ 2.0 or 2.6 GHz 

2 OpenMP + MKL Lapack DPOSV() 

Intel Xeon Phi 7120P 2 16 OpenMP in offload mode + MKL Lapack DPOSV() 

NVidia Kepler K20M GPUs  3 128 CUDA + cuBLAS Batched functions Dgemm Dgetrf() 
and Dgetri()  

Table 1: Available hardware on the CSIRO accelerator cluster ‘Bragg-l’. 2 CPU sockets are housed with either 2 Phi cards or 3 Kepler GPUs.  
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Figure 3: Throughput of models achieved on different hardware.. Each model tests for 
interaction between two markers in an 8-parent population and results in model 
matrices of 64 x  number of individuals (= 300). 10,000-15,000 models per batch were 
then performed to get the throughput. CPU results are for all 16 cores available per 
node. 

GPU function % Runtime 
CreateCrossTerms 3.7 
Dgemm [C ·  CT] 34.5 
Dgetrf 19 
Dgetri 22 
Dgemm  [CT · y] 7.5 
Dgemm  [X-1  · [CT · y]] 1.5 
Dgemm  [CT  ·  b] 7 
daxpy_batched 1.5 
ddot_batched 0.2 

Profiling results of a CUDA version using batched cuBLAS functionality are shown in Table 2 and obtained from the Nsight 
Eclipse IDE. It is seen that the batched DGEMM functions takes over half the runtime and achieves ~200GFLOPs 
performance for the initial C · CT multiplication. The inversion calculations take the bulk of the remaining processing time 
(~40%) 

CUDA interoperability with cuBLAS functions streamlined the use of GPUs for this application. 

Although using essentially identical code as written for the CPU, programming of the Intel Phi in offload mode had a 
number of unusual features that came from the dual object code production. Code regions required conditional 
compilation to prevent unusual behaviour such as multiple printf() outputs and to incorporate use of the HDF5 library. 

Serialisation of access to the HDF5 control file was found to not negatively impact performance even when up to 30 
separate processes were used to compute the set of solutions.  

 

 

 

 

 

Figure 2: The linear regression equation being calculated. C is the input 
probability cross term matrix, y is the response being modelled and b are the 
calculated model parameters that best predict the response from the given C 
data. 
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