
GPU-Accelerated 3D Surface Reconstruction using Gaussian Mixture Sampling
and Sparse Voxel Lists

Benjamin Eckart†, Alejandro Troccoli‡, Kihwan Kim‡, Jan Kautz‡

† The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA USA
‡ NVIDIA Research, Santa Clara, CA USA

Introduction

From self-driving cars to mixed reality on cell phones, there is a
fast growing need to understand how to build advanced spatial
awareness into our smart devices.

SoftKinetic’s Time-of-Flight Sensor

Project Tango’s Structured Light Sensor

Typical 3D sensors, such as the SoftKinetic or Google’s Project
Tango (pictured above), operate by generating vast amounts of
samples of solid objects many times per second. The collection of
these samples is referred to as a point cloud, and this data
structure forms the basis of many spatial perception algorithms.
It is therefore important to develop efficient and robust
techniques to manage and process point cloud data.

Contributions

A common operation of particular importance is 3D Surface
Reconstruction: the process of deriving solid 3D geometry from
unorganized sets of points.

In this poster, we describe a parallel method to hierarchically
process and compress 3D point data into a statistical parametric
form from which a 3D triangle mesh can be quickly constructed.
We leverage our model through sparse, parallelized importance
sampling to facilitate a stochastic marching cubes surface
extraction.

Parametric Model: Gaussian Trees

We build our parametric model by recursively creating a tree of
8-component Gaussian Mixture Models in a top-down fashion.

Stanford bunny models from different levels in the GMM tree. Each
color denotes the area of support of a single Gaussian, and the
ellipsoids indicate their 1 sigma extent.

Our spatial decomposition can be compared to an octree, but
instead of recursively subdividing space into regular octants, we
use parallelized Expectation Maximization (EM) to allow the
subdivisions to be probabilistic and data driven.

Stochastic Surface Extraction

Since we can produce a valid probability distribution function
from our Gaussian Tree (a slice through the tree produces a
regular Gaussian Mixture Model), any isovalue of this PDF will
form a probabilistic “shell” around our data according to a given
confidence value. Thus, the isosurface extraction process forms
the basis of our surface reconstruction.

The graphics above show sample PDF from 4 different levels in the
Gaussian tree, from lowest to highest fidelity. Any isocontour of
these PDF’s forms a valid 3D isosurface associated with some
confidence value.

Sparse Sampling for Meshification

A straightforward method for extracting this isosurface from the
Gaussian hierarchy would be to sample densely in a regular grid
and triangulate over isovalue crossings using the Marching Cubes
algorithm, but this is quite inefficient since most of the 3D
volume is sparse.

Thus, we use Importance Sampling (IS) in order to quickly and
sparsely find regions of high 3D spatial probability. Given our
model, Θ, the probability of a particular voxel Vk is related to the
Gaussian Mixture parameters πj ,µj ,Σj for J mixtures and N
samples,

p(Vk|Θ) ≈
J+1∑
j=1

πj
N

i=N∑
i=1

IVk
(xi)

where xi ∼ N (µj |Σj) and I is an indicator function for whether
xi falls within the bounds of Vk.

Note that each sample can be tested independently and in
parallel, leading us to a very fast CUDA implementation. We can
then send these samples to a CUDA-accelerated Marching Cubes
routine for the final meshification.

Pipeline Overview

We first build a hierarchical GMM by recursively applying EM.
Secondly, we run stochastic importance sampling on the highest
detail PDF to build a sparse list of active voxels that we feed to
marching cubes for the final surface reconstruction.

Testing Datasets

We tested our method over several standard datasets. From left
to right:

� Bunny - 35,947 points (0.41MB for points/1.21MB for mesh)

� Burghers of Calais - 3.47M points (39.68MB/118.17MB) [4]

� Cactus Garden - 1.9M points (21.71MB/64.70MB) [4]

� Lounge - 1.62M points (18.50MB/54.56MB) [4]

Procedural Surface Reconstruction

Using these datasets, we first constructed our model and then
sampled from the model in order to procedurally generate the
mesh. Below we compare the original models to our PDFs and
reconstructed surfaces.

(1st column): Heat maps represent the areas of high data
probability (PDFs) for each model, (2nd column): The
reconstructed scenes with our hierarchical GMM and stochastic
marching cubes in low voxel resolution (2563). The red rectangle
denotes the region of selection where we reconstruct with higher
resolution. (3rd column): Our reconstruction with higher quality.
(4th column): Original meshes from [4]. One can see from these
results that our method is able to reconstruct surfaces with high
fidelity.

Space Efficiency

To test our space efficiency, we compared the fidelity of our model
with that obtained by a simpler strategy: random subsampling.

Size Ours Subsampling
(kB) (PSNR) (PSNR)
0.31 62.3 28.1
2.5 65.7 33.8
20 68.1 42.5
159 70.3 51.1
1270 72.3 59.9

We subsampled the point
cloud data at varying levels to
match the model sizes and
compare PSNRs. We use
Peak Signal to Noise Ratio
(PSNR) as our quality metric,
which is calculated from the
RMSE according to [2].

Compared to subsampling, the smallest GMM doubles the PSNR.
Similarly, the largest GMM has 10 more PSNR than a subsampled
point cloud of equivalent size.

Native Android CUDA Application

To demonstrate our computational efficiency, we deployed this
pipeline onto an NVIDIA Shield Tablet. Our hierarchical
segmentation is able to stream SoftKinetic data and segment in
greater than real-time (356 FPS for a coarse level 1 segmentation
and 124 FPS for a high fidelity level 5 segmentation). Our sparse
sampling strategy for a 256x256x256 Marching Cubes grid takes
about 2.5 ms (400 FPS) for a level 4 segmentation in CUDA.

Reconstruction Comparison under Noise

The probabilistic representation of 3D structure allows us to
implicitly model noise by maintaining surface covariances, and
perform outlier rejection with the inclusion of a uniform mixture.

Noisy Input

Our Method

Poisson

Ball Pivoting

(1st row): Noisy model where the noise was randomly added
(Normal distribution), (2nd row): our results, (3rd row): Poisson
reconstruction [3], (4th row): Ball-pivoting [1]. Note that even with
more aggressive noise (2nd column), our approach can effectively
handle the noise, providing better overall model quality.

Conclusions

We have shown that our proposed model is good for compression,
handling noise, and reconstructing surfaces with high fidelity.
Furthermore, given the parallel and recursive construction of our
model, it can be efficiently implemented in CUDA, allowing for
real-time rates on a mobile device.

References

[1] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin.

The ball-pivoting algorithm for surface reconstruction.

IEEE Transactions on Visualization and Computer Graphics, 5(4):349–359,

1999.

[2] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno.

Metro: Measuring error on simplified surfaces.

Computer Graphics Forum, 17(2):167–174, 1998.

[3] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.

Poisson surface reconstruction.

In Eurographics Symposium on Geometry Processing, pages 61–70, 2006.

[4] Qian-Yi Zhou and Vladlen Koltun.

Dense scene reconstruction with points of interest.

ACM Transactions on Graphics, 32(4):112, 2013.

GTC 2015: GPU Technology Conference

contact Name 

Benjamin Eckart: eckart@cmu.edu
Poster 

P5224

Category: Computer Vision & Machine Vision - CV15


