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+ The acceleration of spintronic simulations in double precision based on the 
implementation of an explicit finite differences solver by factors of 1.6 to 13x 

is reported.

+ The smaller factor was observed when comparing a single thread 
implementation running in a Intel Xeon E5620 @ 2.4 GHz and a Nvidia 

GeForce GTX 670M. The highest value was observed when comparing an 
Intel i7-2760QM @ 2.4 GHz. and a Nvidia Tesla M2070. 

+ Optimizations consisted of the reduction of access to the global device memory 
by the increased usage of registers and shared memory.
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+ Interaction between spins of itinerant and 
localized electrons in an “sd” Hamiltonian:
+ Localized electrons approximated as a 
classical magnetization vector
+ Induced spin density consisting of adiabatic 
plus deviation terms:
+ Non adiabatic spin current density, from spin 
parallel to local magnetisation plus out of 
equilibrium spin density

Closed form for non equilibrium spin density

+ Physically realistic but computationally unfriendly (i.e. looooooooooooooooooooooooong 
computation times -> unpractical)
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Vortex Wall (VW): Same as for ATW, we point out the noticeable effect of the diffusion constant around the 

vortex core, which is the smallest feature of the wall.
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+ Current research in the field of spintronics relies heavily upon the use of numerical 
simulations. 

+ Some simulations in the field of spintronics were unfeasible due to the long running 
times required sometimes months. 

+In Figure 1 we present the results of running our finite differences solver in various 
CUDA-capable devices.

+ Our simulation consisted of the integration of the equation known as the Zhang 
and Li model for 1 ns in a grid with 57,600 cells[1,2], an example of the same
simulation but using 360,000 cells for a more precise numerical integration is 

shown in Figure 2. 

 + An equally realistic but larger simulation might require as much 16,000,000 cells. 

+ So far the largest simulations performed with our code are on the order of 1,440,000
cells with integration times of 10 ns and execution times of up to 5 hours 

+ A simulation like the one in Figure 2 usually becomes a single data point in a typical 
numerical study. 

+ A thorough study migh require as many as 1000 datapoints or approximately 208
days assuming that all simulations are executed one after another.

+ Interestingly, the best performance  obtained in the nominally superior 
hardware of the Tesla K20m (2496 cores @ 706 Mhz, Memory clock)[3]  but on 

the Tesla M2070 (448 @ 1.15 GHz)[4]. 
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Asymmetric Transverse Wall (ATW): maps of magnetization components of non equilibrium spin 
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accumulation under a uniform current density with D = 0, 1 and 10 nm /ps 
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__global__ void gsource(double u, double *sm, double *m, int grid_width)
//Computation of source term using global memory
    {
    int i,j,index;
    

//The last increment of two is due to the shifting of
//two array elements in the x direction in all arrays
    i = blockIdx.x * blockDim.x + threadIdx.x + 2;
    j = blockIdx.y * blockDim.y + threadIdx.y;
// map the two 2D indices to a single linear, 1D index
    index = j * grid_width + i;
    if (i > 1 && i <  && j >= 0 && j < NY)
        {
        sm[index] = u * (m[ ] - 8.0 * m[ ] + 8.0 
            * m[ ] - m[ ]) / (12.0 * DELTAX);
        }
    }

double DELTAX;
    DELTAX = TX/NX;

NX+2

index - 2 index - 1
index + 1 index + 2

__global__

...
__global__ void gsource

void fillMatrix44Laplacian

__global__ void glaplacianyboundaries

 //Constant Variables Increase performance with precalculation of values
    

(double u, double *sm, double *m, int grid_width)
//Computation of source term using global memory
    {
    int i, j, index;
//The last increment of two is due to the shifting of
//two array elements in the x direction in all arrays
    i = blockIdx.x * blockDim.x + threadIdx.x + 2;
    j = blockIdx.y * blockDim.y + threadIdx.y;
// map the two 2D indices to a single linear, 1D index
    index = j * grid_width + i;
    if (i > 1 && i <  && j >= 0 && j < NY){
        sm[index] = u * (m[ ] - 8.0 * m[ ] + 8.0 * m[ ] 
            - m[ ]) * ;
    }
}

()
    {
    HANDLE_ERROR(cudaMalloc((void **)&Matrix44LaplacianB_01, sizeof(double)* 7));
...
    double * Matrix44LaplacianB_01_c = new double[16];
...
    double A11 = 2.0*DELTAY_CONS;
...
//Determinants of 2nd order
    DET2A = A33*A44 - A34*A43;
...
    Matrix44LaplacianB_01_c[0] = A22*A33 - A23*A32;  //2A
...
    Matrix44LaplacianB_01_c[6] = A11*DET2A - A21*DET2B + A31*DET2C; //YDENOM
... 
    cudaMemcpy( , Matrix44LaplacianB_01_c, 7 * sizeof(double), 
        cudaMemcpyHostToDevice);
...
   }

//Computation of laplacian term using global memory
(double *lapl_x, double *lapl_y, double *lapl_z,

    double *d2ady2, double *d2bdy2, double *d2gdy2,double *deltam_x, double *deltam_y, 
    double *deltam_z,int grid_width, double DELTAY, double * , 
    double * Matrix44LaplacianB_02, double * Matrix44LaplacianB_03, 
    double * Matrix44LaplacianB_04)
    {
...
// j = 0 mesh point after outmost down
    if (i > 1 && i < NXPLUS2 && j == 0)
        {
// d2deltam_x/dy2, (Lower Boundary)
        BFCT1 = deltam_x[frontneigh2] - deltam_x[index];
        BFCT2 = deltam_x[frontneigh1] - deltam_x[index];
...
    double YDENOM = ;
    double YNUM2 = -BFCT1 * Matrix44LaplacianB_01[3] + BFCT2 * Matrix44LaplacianB_01[4] 
    - BFCT3 * ;
    D2FDL2 = YNUM2 / YDENOM;

    d2ady2[index] = D2FDL2;
...
    }

const int NXPLUS2 = NX + 2;
    const int NYMINUS2 = NY - 2;
    const int NYMINUS1 = NY - 1

NXPLUS2
index - 2 index - 1 index + 1

index + 2 DELTAX_TIMES_12_INV

Matrix44LaplacianB_01

Matrix44LaplacianB_01

Matrix44LaplacianB_01[6]

Matrix44LaplacianB_01[5]
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