
Optimization of an Explicit Finite Differences Solver 
for Enabling Faster Studies of Spintronic Effects 

David Claudio-Gonzalez*, 
*Engineering Division Campus Irapuato-Salamanca,  University of Guanajuato, 38940 Yuriria, Gto. Mexico

+Laboratoire de Physique des Solides, CNRS UMR 8502, Universite Paris-Sud XI, 91405 Orsay, France

Thomas Sanchez-Lengeling*, José F. Ramos-Ortega*, André Thiaville+, and Jacques Miltat+ 

+ The acceleration of spintronic simulations in double precision based on the 
implementation of an explicit finite differences solver by factors of 1.6 to 13x 

is reported.

+ The smaller factor was observed when comparing a single thread 
implementation running in a Intel Xeon E5620 @ 2.4 GHz and a Nvidia 

GeForce GTX 670M. The highest value was observed when comparing an 
Intel i7-2760QM @ 2.4 GHz. and a Nvidia Tesla M2070. 

+ Optimizations consisted of the reduction of access to the global device memory 
by the increased usage of registers and shared memory.

[1] S. Zhang and Z. Li Phy. Rev. Lett. 93, 127204 (2004)
[2] D. Claudio-Gonzalez, A. Thiaville and J. Miltat Phy. Rev. Lett. 108, 227208 (2012)

[3] http://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v07.pdf
[4] http://www.nvidia.com/docs/IO/43395/BD-05837-001_v01.pdf

+ Interaction between spins of itinerant and 
localized electrons in an “sd” Hamiltonian:
+ Localized electrons approximated as a 
classical magnetization vector
+ Induced spin density consisting of adiabatic 
plus deviation terms:
+ Non adiabatic spin current density, from spin 
parallel to local magnetisation plus out of 
equilibrium spin density

Closed form for non equilibrium spin density

+ Physically realistic but computationally unfriendly (i.e. looooooooooooooooooooooooong 
computation times -> unpractical)

x y z

Vortex Wall (VW): Same as for ATW, we point out the noticeable effect of the diffusion constant around the 

vortex core, which is the smallest feature of the wall.

2 D  = 0 nm /ps0

2 D  = 1 nm /ps0

2 D  = 10 nm /ps0

+ Current research in the field of spintronics relies heavily upon the use of numerical 
simulations. 

+ Some simulations in the field of spintronics were unfeasible due to the long running 
times required sometimes months. 

+In Figure 1 we present the results of running our finite differences solver in various 
CUDA-capable devices.

+ Our simulation consisted of the integration of the equation known as the Zhang 
and Li model for 1 ns in a grid with 57,600 cells[1,2], an example of the same
simulation but using 360,000 cells for a more precise numerical integration is 

shown in Figure 2. 

 + An equally realistic but larger simulation might require as much 16,000,000 cells. 

+ So far the largest simulations performed with our code are on the order of 1,440,000
cells with integration times of 10 ns and execution times of up to 5 hours 

+ A simulation like the one in Figure 2 usually becomes a single data point in a typical 
numerical study. 

+ A thorough study migh require as many as 1000 datapoints or approximately 208
days assuming that all simulations are executed one after another.

+ Interestingly, the best performance  obtained in the nominally superior 
hardware of the Tesla K20m (2496 cores @ 706 Mhz, Memory clock)[3]  but on 

the Tesla M2070 (448 @ 1.15 GHz)[4]. 

was NOT

Figure 1

Figure 2

Asymmetric Transverse Wall (ATW): maps of magnetization components of non equilibrium spin 
2

accumulation under a uniform current density with D = 0, 1 and 10 nm /ps 

x y z

-4
red = +1.0 x 10 , blue = - -4

1.0 x 10

red = +1.0, blue = -1.0

2 D  = 0 nm /ps0

2 D  = 1 nm /ps0

2 D  = 10 nm /ps0

__global__ void gsource(double u, double *sm, double *m, int grid_width)
//Computation of source term using global memory
    {
    int i,j,index;
    

//The last increment of two is due to the shifting of
//two array elements in the x direction in all arrays
    i = blockIdx.x * blockDim.x + threadIdx.x + 2;
    j = blockIdx.y * blockDim.y + threadIdx.y;
// map the two 2D indices to a single linear, 1D index
    index = j * grid_width + i;
    if (i > 1 && i <  && j >= 0 && j < NY)
        {
        sm[index] = u * (m[ ] - 8.0 * m[ ] + 8.0 
            * m[ ] - m[ ]) / (12.0 * DELTAX);
        }
    }

double DELTAX;
    DELTAX = TX/NX;

NX+2

index - 2 index - 1
index + 1 index + 2

__global__

...
__global__ void gsource

void fillMatrix44Laplacian

__global__ void glaplacianyboundaries

 //Constant Variables Increase performance with precalculation of values
    

(double u, double *sm, double *m, int grid_width)
//Computation of source term using global memory
    {
    int i, j, index;
//The last increment of two is due to the shifting of
//two array elements in the x direction in all arrays
    i = blockIdx.x * blockDim.x + threadIdx.x + 2;
    j = blockIdx.y * blockDim.y + threadIdx.y;
// map the two 2D indices to a single linear, 1D index
    index = j * grid_width + i;
    if (i > 1 && i <  && j >= 0 && j < NY){
        sm[index] = u * (m[ ] - 8.0 * m[ ] + 8.0 * m[ ] 
            - m[ ]) * ;
    }
}

()
    {
    HANDLE_ERROR(cudaMalloc((void **)&Matrix44LaplacianB_01, sizeof(double)* 7));
...
    double * Matrix44LaplacianB_01_c = new double[16];
...
    double A11 = 2.0*DELTAY_CONS;
...
//Determinants of 2nd order
    DET2A = A33*A44 - A34*A43;
...
    Matrix44LaplacianB_01_c[0] = A22*A33 - A23*A32;  //2A
...
    Matrix44LaplacianB_01_c[6] = A11*DET2A - A21*DET2B + A31*DET2C; //YDENOM
... 
    cudaMemcpy( , Matrix44LaplacianB_01_c, 7 * sizeof(double), 
        cudaMemcpyHostToDevice);
...
   }

//Computation of laplacian term using global memory
(double *lapl_x, double *lapl_y, double *lapl_z,

    double *d2ady2, double *d2bdy2, double *d2gdy2,double *deltam_x, double *deltam_y, 
    double *deltam_z,int grid_width, double DELTAY, double * , 
    double * Matrix44LaplacianB_02, double * Matrix44LaplacianB_03, 
    double * Matrix44LaplacianB_04)
    {
...
// j = 0 mesh point after outmost down
    if (i > 1 && i < NXPLUS2 && j == 0)
        {
// d2deltam_x/dy2, (Lower Boundary)
        BFCT1 = deltam_x[frontneigh2] - deltam_x[index];
        BFCT2 = deltam_x[frontneigh1] - deltam_x[index];
...
    double YDENOM = ;
    double YNUM2 = -BFCT1 * Matrix44LaplacianB_01[3] + BFCT2 * Matrix44LaplacianB_01[4] 
    - BFCT3 * ;
    D2FDL2 = YNUM2 / YDENOM;

    d2ady2[index] = D2FDL2;
...
    }

const int NXPLUS2 = NX + 2;
    const int NYMINUS2 = NY - 2;
    const int NYMINUS1 = NY - 1

NXPLUS2
index - 2 index - 1 index + 1

index + 2 DELTAX_TIMES_12_INV

Matrix44LaplacianB_01

Matrix44LaplacianB_01

Matrix44LaplacianB_01[6]

Matrix44LaplacianB_01[5]

2. The Zhang and Li model

1. Abstract

3. Numerical solution of spin accumulation

4. Advantages of using GPU computing

5. Code example before optimization

6. Code examples of optimization

References

Science without GPU
 computing

Science with GPU
 computing

contact name 

David Claudio-Gonzalez: dclaudio@ugto.mx
Poster 

P5226

category: ComPutational PhysiCs - CP13


