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+ The acceleration of spintronic simulations in double precision based on the
implementation of an explicit finite differences solver by factors of 1.6 to 13x
IS reported.

+ The smaller factor was observed when comparing a single thread
implementation running in a Intel Xeon E5620 @ 2.4 GHz and a Nvidia
GeForce GTX 670M. The highest value was observed when comparing an
Intel i7-2760QM @ 2.4 GHz. and a Nvidia Tesla M2070.

+ Optimizations consisted of the reduction of access to the global device memory
by the increased usage of registers and shared memory.

+ Interaction between spins of itinerant and
localized electrons in an “sd” Hamiltonian:
+ Localized electrons approximated as a ~ M(r.t) | .

PP m(r.t) = mg(r. t) + dmg(r,t) = np + om(r. t)
classical magnetization vector s |
+ Induced spin density consisting of adiabatic J(r,t) = Jo(r,t) + 0J(r, t)
plus deviation terms:
+ Non adiabatic spin current density, from spin
parallel to local magnetisation plus out of
equilibrium spin density
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Asymmetric Transverse Wall (ATW): maps of magnetization components of non equilibrium spin
accumulation under a uniform current density with D =0, 1 and 10 nm’/ps
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Vortex Wall (VW): Same as for ATW, we point out the noticeable effect of the diffusion constant around the
vortex core, which is the smallest feature of the wall.

+ Current research in the field of spintronics relies heavily upon the use of numerical
simulations.

+ Some simulations in the field of spintronics were unfeasible due to the long running
times required sometimes months.

+In Figure 1 we present the results of running our finite differences solver in various
CUDA-capable devices.

+ Our simulation consisted of the integration of the equation known as the Zhang
and Li model for 1 ns in a grid with §7,600 cells[1,2], an example of the same
simulation but using 360,000 cells for a more precise numerical integration is

shown in Figure 2.
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+ An equally realistic but larger simulation might require as much 16,000,000 cells.

+ So far the largest simulations performed with our code are on the order of 1,440,000
cells with integration times of 10 ns and execution times of up to 5 hours

+ A simulation like the one in Figure 2 usually becomes a single data point in a typical
numerical study.

+ A thorough study migh require as many as 1000 datapoints or approximately 208
days assuming that all simulations are executed one after another.

+ Interestingly, the best performance was NOT obtained in the nominally superior
hardware of the Tesla K20m (2496 cores @ 706 Mhz, Memory clock)[3] but on
the Tesla M2070 (448 @ 1.15 GHz)[4].

(double u, double *sm, double *m, int grid width)
//Computation of source term using global memory
{
int 1i,J,1ndex;
double DELTAX;
DELTAX = TX/NX;
//The last increment of two is due to the shifting of
//two array elements in the x direction in all arrays
i = blockIdx.x * blockDim.x + threadIdx.x + 2;
7 = blockIdx.y * blockDim.y + threadIdx.y;
// map the two 2D indices to a single linear, 1D index
index = j * grid width + 1;
if (1 > 1 && 1 < NX+2 && j >= 0 && 3 < NY)
{
sm[index] = u * (m[index - 2] - 8.0 * m[index - 1] + 8.0
* m[{index + 1] - m[index + 2]) / (12.0 * DELTAX);
}
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//Constant Variables Increase performance with precalculation of wvalues
const int NXPLUS2 = NX + 2;
const int NYMINUS2 NY - 2;
const int NYMINUS1 NY -1

(double u, double *sm, double *m, int grid width)

//Computation of source term using global memory

{

int 1, Jj, 1ndex;
//The last increment of two is due to the shifting of
//two array elements in the x direction in all arrays

i = blockIdx.x * blockDim.x + threadIdx.x + 2;

7 = blockIdx.y * blockDim.y + threadIdx.y;
// map the two 2D indices to a single linear, 1D index

index = j * grid width + 1;

if (i > 1 && i < NXPLUS2 &¢& j >= 0 && J < NY) {

sm[index] = u * (m[index - 2] - 8.0 * m[index - 1] + 8.0 * m[index + 1]
- m[index + 2]) * DELTAX TIMES 12 INV;

()

{
HANDLE ERROR (cudaMalloc ((void **)&Matrix44LaplacianB 01, sizeof (double)* 7));

double * Matrix44LaplacianB 01 ¢ = new double[l6];
double All = 2.0*DELTAY_CONS;

//Determinants of 2nd order
DET2A = A33*A44 - A34*A43;

Matrix44LaplacianB 01 c[0] = A22*A33 - A23*A32; //2A
Matrix44LaplacianB 01 c[6] = AL1*DET2A - A21*DET2B + A31*DET2C; //YDENOM

cudaMemcpy (Matrix44LaplacianB 01, Matrix44LaplacianB 01 ¢, 7 * sizeof (double),
cudaMemcpyHostToDevice) ;

}
//Computation of laplacian term using global memory
(double *lapl x, double *lapl y, double *lapl z,
double *d2ady2, double *d2bdy2, double *dZgdy2,double *deltam x, double *deltam y,
double *deltam z,int grid width, double DELTAY, double * Matrix44LaplacianB 01,

double * Matrix44LaplacianB 02, double * Matrix44LaplacianB 03,
double * Matrix44LaplacianB 04)

{

// J = 0 mesh point after outmost down
if (1 > 1 && 1 < NXPLUS2 && j == 0)
{
// d2deltam x/dy2, (Lower Boundary)
BFCT1 = deltam x[frontneighZ] - deltam x[index];
BFCT2 = deltam x[frontneighl] - deltam x[index];

double YDENOM = Matrix44LaplacianB 01[6];

double YNUM2 = -BFCT1 * Matrix44LaplacianB 01[3] + BFCT2Z * Matrix44LaplacianB 01[4]
- BFCT3 * Matrix44LaplacianB 01[5];

D2FDL2 = YNUM2 / YDENOM;

d2ady?2[index] = D2FDLZ2;

}
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