
 Recently, Amount of I/O data for numerical simulations becomes very huge due to rapid
increase of simulation scale and accuracy. However, there is a large gap between the
computational performance of the processor units; i.e., CPU, GPU, and so on and the I/O
performance of persistent/non-volatile storage devices such as HDD (Hard Disk Drive),
SSD (Solid State Drive). Therefore, the ratio of latency time in I/O processes has been
increasing, in comparison with that of computation time, in massively large-scale GPU
simulati

Purpose
To propose a novel high performance network I/O, in order to achive a reduction of
latency time for I/O process in large-scale GPU simulation.

 - Using RDMA [3] on InfiniBand [4] interconnection between application node and storage node
 - Assuming the introduction of SCMs as a main memory into the computer architecture

Pe
rf

or
m

an
ce

Years

Gap
CPU

GPU

HDD
SSD

Computation >> I/O

Application Management process

Network File System Network File System

Protocol stack Protocol stack

Application node Storage node

Local file systemData transfer with socket

Read/Write

Data transfer with RDMA

3.Measurement

5. Example of latency time of I/O process
Terget:
 - 3 dimensional FDTD (Finite-Difference Time-Domain) method
 - parallel computation using 4 GPUs (Tesla M2090 x4) in 1 node
 - I/O size: 9.2 GB
 - Number of calculation loop: 2000
 - Number of I/O process: 200 (at each 10 step)

I/O
42.3 %

Calculation
33.9 %

Data copy
23.5 %

Others
0.3 %

Others
0.4 %

Calculation
53.2 %

Data copy
40.4 %

I/O
6.0 %

Procesure of measurement
1) Preparing data array in application
2) following sequences were carried on ten times
 - Copy data from/to storage node using each method
 - Measure I/O latencies during data transfer.

Using onventional method
total excution time: 8653[s]

Using proposed method
total excution time: 5496 [s]

The latency time of I/O processes was reduced by approximately 6 %.

Management process is running as a daemon in a storage node which has a huge memory
pool for data storage.

Using RDMA on InfiniBand interconnection between application node and storage node

Our proposed method bypasses software stacks such as network file system, TCP/IP and
IPoIB. Therefore, it eliminates overhead of them.

SCM

GPU

SCM

CPU

1. Introduction 2. Design and implemention proposed method

6. Conclusion

Daemon Process
D1

Application

Application node Storage node

User

kernel

Hardware

Nvidia
Driver

GPU

D1

D1 D2 ...

D2
I/O API

CUDA
API

Mellanox Driver

HCA HCA

Verbs API

InfiniBand switch

Verbs API

Mellanox
Driver

RDMA

Data

Features
 - Non-volatility
 - Low latency
 - connectable to a memory bus
 - low power consumption

Introduction of SCMs into computer architecture
 - as a main mamory
 - as a storage device

Schematic of SCM (Storage Class Memory)

Access Latency of each device

SCM has both features of main memory and storage device.

4. Results
Proposed method

Conventional method

CPU
Main memory
Network
OS
Network file system
Local file system

Intel Xeon X5670
16 GB
InfiniBand QDR, 40 Gbps
CentOS 6.3
NFS
tmpfs [5]

We proposed the novel high performance network I/O, in order to achive the reduction of
the latency time of I/O process in massively large-scale GPU simulation.

We implemented the orignal I/O API which bypasses the software stacks such as network
file system, TCP/IP and IPoIB.

We found that the latency time of the I/O processes is reduced to approximately 6 %
of total execution time by applying our proposed method to large-scale FDTD simulation.

Software stack of conventional method Software stack of proposed method
Studies on reduction of the latency time of I/O process

 Acceleration of I/O data transfer with parallel I/O
 - Lustre, Glusterfs etc.

 Using non-volatile memory instead of HDD (Hard Disk Drive)
 - SSD (Solid State Drive)
 - SCM (Storage Class Memory)[1][2]

 In our reaserch, we focus on SCM.

Acceleration of I/O data transfer with RDMA for massively large-scale GPU simulation
 Shohei Onishi1 Jerdvisanop Chakarothai2 Takuto Ishii3 Shingo Hashikawa3 Yukihisa Suzuki1

References
[1] K.H. Park, S.K. Park, H. Seok, W. Hwang, D. Shin, J.H. Choi, and K. Park, “Efficient memory management of a
 hierarchical and a hybrid main memory for MN-MATE platform,” Proc. International Workshop on Programming
 Models and Applications for Multicores and Manycores, pp.83-92, ACM, 2012.
[2] J. Jung, Y. Won, E. Kim, E. Kim, H. Shin, and B. Jeon, “FRASH: Exploiting storage class memory in hybrid system for
 hierarchical storage,” ACM Trans. on Storage, vol.6, no.1. pp.1–25, ACM, 2010.
[3] R. Recio, B. Metzler, P. Culley, J. Hilland, D. Garcia, “A remote direct memory protocol specification,” , RFC 5040,
 Oct. 2007.
[4] RDMA Aware Programming User Manual, http://www.mellanox.com
[5] P. Snyder, “tmpfs: A virtual memory file system,” Proc. Autumn 1990 EUUG Conf., pp. 241–248, 1990.

Write performance Read performance

Management processApplication

tmpfs

Application node Storage node

Application

Conventioal method
Proposed method with protocol

Proposed method

Verbs API

Host Channel Adopter

InfiniBand Switch

Socket API

Host Channel Adopter

NFS
Protocol

stack

Verbs API Socket API

Protocol
stack

NFS

Local I/O

I/O API

User
kernel

Hardware

Write performance: approximately 2.4 GB/s, x5.7 compare to conventional method

Read performance: approximately 2.5 GB/s, x2.7 conpare to conventional method
* (I/O size: 4 GB)

SRAM DRAM SSD HDD

STT-MRAM PCM

SCM

Latency [ns]
100 1000 10810

Application node Storage node

User

kernel

Hardware
GPU

D1

D1
D2

Storage Device

Local
File System

Device
Driver

InfiniBand switch

NFS

RPC
TCP/IP
IPoIB

Mellanox
Driver

HCA

VFS

Nvidia
Driver

CUDA
API

Application
D1 D2 ...Data

HCA

System Call

Mellanox
Driver

VFS

NFS

RPC
TCP/IP
IPoIB

InfiniBand switch

1. Tokyo Metropolitan Univesity
2. National Institute of Information and Communications Technology
3. ELSA Japan Inc.

contact Name

Shohei Onishi: onishi@emc.eee.se.tmu.ac.jp
Poster

P5228

Category: Developer - Tools & Libraries - DT03

