
 Recently, Amount of I/O data for numerical simulations becomes very huge due to rapid 
increase of simulation scale and accuracy. However, there is a large gap between the 
computational performance of the processor units; i.e., CPU, GPU, and so on and the I/O 
performance of persistent/non-volatile storage devices such as HDD (Hard Disk Drive), 
SSD (Solid State Drive). Therefore, the ratio of latency time in I/O processes has been 
increasing, in comparison with that of computation time, in massively large-scale GPU 
simulati

Purpose
To propose a novel high performance network I/O, in order to achive a reduction of 
latency time for I/O process in large-scale  GPU simulation.

 - Using RDMA [3] on InfiniBand [4] interconnection between application node and storage node
 - Assuming the introduction of SCMs as a main memory into the computer architecture
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5. Example of latency time of I/O process
Terget:
 - 3 dimensional FDTD (Finite-Difference Time-Domain) method
 - parallel computation using 4 GPUs (Tesla M2090 x4) in 1 node
 - I/O size: 9.2 GB
 - Number of  calculation loop: 2000
 - Number of I/O process: 200 (at each 10 step)
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Procesure of measurement
1) Preparing data array in application
2) following sequences were carried on ten times
 - Copy data from/to storage node using each method
 - Measure I/O latencies during data transfer.

Using onventional method
total excution time: 8653[s]

Using proposed method
total excution time: 5496 [s]

The latency time of I/O processes was reduced by approximately 6 %.

Management process is running as a daemon in a storage node which has a huge memory 
pool for data storage.

Using RDMA on InfiniBand interconnection between application node and storage node

Our proposed method bypasses software stacks such as network file system, TCP/IP and 
IPoIB. Therefore, it eliminates overhead of them.
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6. Conclusion
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Features
 - Non-volatility
 - Low latency
 - connectable to a memory bus
 - low power consumption

Introduction of SCMs into computer architecture
 - as a main mamory
 - as a storage device

Schematic of SCM (Storage Class Memory) 

Access Latency of each device

SCM has both features of main memory and storage device.

4. Results
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We proposed the novel high performance network I/O, in order to achive the reduction of 
the latency time of I/O process in massively large-scale GPU simulation.

We implemented the orignal I/O API which bypasses the software stacks such as network 
file system, TCP/IP and IPoIB.

We found that the latency time of the I/O processes is reduced to approximately 6 % 
of total execution time by applying our proposed method to large-scale FDTD simulation.

Software stack of conventional method Software stack of proposed method
Studies on reduction of  the latency time of I/O process

 Acceleration of I/O data transfer with parallel I/O
  - Lustre, Glusterfs etc.

 Using non-volatile memory instead of HDD (Hard Disk Drive)
  - SSD (Solid State Drive)
  - SCM (Storage Class Memory)[1][2]

 In our reaserch, we focus on SCM.
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