
Undergraduate GPU-enabled Research Through Python
Garrett Allen, Lindsay Blake, Matt Bellis (mbellis@siena.edu)
Department of Physics and Astronomy, Siena College, Loudonville, NY

Exposing undergraduates to GPU concepts Number theoryExploring nearest-neighbor fitting bias

Continuum Analytics numba.cuda library

Garrett Allen, a rising-junior Computer Science major at Siena, had become intrigued by
a conjecture by Siena Mathematics professor, Mohammad Javaheri , called the Modified
3x + 1 Conjecture, which we state below.

``Conjecture states that the iteration of the map

on every positive integer ends in the cycle {1, 2, 4}. By viewing the branches of the map
T(x) comprising a semigroup action on positive integers, we have the following
modification: Let T1(x) = x/2 and T2(x) = 3x + 1. Let m and n be two positive integers that
are not divisible by 3. Then there exists a sequence of iterations of T1 and T2 that maps m
to n. By examining the problem backwards, we verify this modified conjecture for all m,
n ≤ 1.676 × 1013.”

Garrett had taken a class in Java and written a program to check for counter-examples to
this conjecture (referred to above). After just a few weeks of playing with some example
code, he decided to implement the same algorithm in numba.cuda. The results are
shown below, comparing Java, numba.cuda, and native Python for comparison. The x-
axis shows the number of numbers (array size) that were checked in any one
function/kernel call.

When a small amount (<1M) of
numbers are checked for counter-
examples, we see little difference. For
larger quantities (>10M), the numba.
cuda is about 10x faster!

While a C-CUDA implementation would
be even faster, that was not the point of
this exercise. Garrett did not have
experience with C, and yet was able to
indulge his number theory interests
using GPU programming techniques!

Support was provided by a grant from the Center for Undergraduate Research
and Creative Activity (CURCA), Siena College and by NSF grant PHY-1307562.
We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Tesla K40 GPU used for this research.

We start out with a mock dataset representing the data that
come out of some experiment, and these data are parametrized
by two variables, X and Y. The density in the center represents
our peak signal on top of a flat background. For our preminary
tests, we worked with ~100 signal events and ~900 background
events (1000 total data points).

Our templates for the
signal (left) and
background (right). We ran
tests with 10k, 100k, and
1M events in these
templates. The background
is uniformly distributed
and the signal is modeled
as a double Gaussian.

This poster details our experiences with exposing undergraduate students to parallel
processing concepts, specifically on the GPU, using a Python interface, bypassing the usual
learning path that makes use of the CUDA C-libraries.

Parallel processing general and GPU programming in particular has the potential to
transform insurmountable challenges into tractable problems.

Continuum Analytics (CA) distributes a consistent installation of Python and many useful
libraries. In addition to this bundling, they also produce their own contributions to the
HPC-Python ecosystem such as numba, a potential replacement for
numpy. http://continuum.io/

CA also provides a Python interface to CUDA through
their numba and numbapro libraries, both
distributed through their Anaconda packaging tool.
We used the numba.cuda library as it allowed us
to most closely mimic what one would do in C.

__global__ void kernel (int *a)
{
 int idx = blockIdx.x*blockDim.x + threadIdx.x;
 a[idx] = idx;
}

int main()
{
 .
 .
 kernel<<<grid,block>>>(d_a);
 .
 .
}

from numba import cuda

@numba.cuda.jit("void(float32[:])")
def kernel(arr_a):
 idx = cuda.blockIdx.x*cuda.blockDim.x + cuda.threadIdx.x
 arr_a[idx] = idx
.
.
.
kernel[block_ct,thread_ct](a)

Conclusions and Acknowledgements
 Prior to this work, Garrett had never programmed in any sort of parallel framework and

Lindsay was not aware of the concept. Garrett made use of the first lesson of Udacity’s
``Introduction to Parallel Programming” course and slides provided by Continuum
Analytics to introduce numba.cuda, and in a few weeks was able to pursue his own ideas
on number theory and contribute to Lindsay’s project, which she was already
programming in Python.

We found the Pythonic numba.cuda to be an excellent tool to expose undergraduate
students to the world of GPU programming. It has a fairly low threshold for entry
and we plan to continue to explore its efficacy in undergraduate education.

It should be noted that Continuum Analytics did not contribute to this poster, nor were they
aware of this work, beyond bug reports filed on Github.

In particle physics (the primary research focus of our group), one is often looking for a
``bump” or ``peak” on top of some background, which is how new particles can be
discovered! The traditional approach uses the Maximum Likelihood Method (MLM) in which
the analyst tests different hypotheses of the shapes, or Probability Distribution Functions
(PDFs), for signal and background, and the relative fraction of each. If the data are
multidimensional, correlations between the PDFs must be taken into account, though this may
not be known a priori.

In many particle physics analysis, there may not be an analytic function for the PDF and
other approximation methods must be used. These generally rely on templates generated
through Monte Carlo techniques and simulations of the detector response.

Lindsay Blake, a rising-junior Physics major explored using the density of ``nearest-neighbors”
as a stand-in for a PDF, and using the MLM to determine the relative fraction of signal and
background. The templates are generated from some known distribution for this simple test
case, though this may be different in a real experiment. The challenge for this type of study is
calculating the density of nearest neighbors, as this is computationally intensive.

An outline of the procedure follows.

It is therefore imperative that we introduce our students
to these concepts early in their career so that they can
become comfortable with (and eventually proficient in)
these frameworks.

At Siena College, a small liberal-arts college in upstate-
NY, most Computer Science and other Science majors
will not take a C/C++ course, but they are exposed to
Python. In the summer of 2014, we explored the idea of
introducing CUDA programming through a Python
wrapper and we settled upon the Continuum Analytics
numba library.

For example, a simple C-CUDA kernel and the call might resemble the following code.

While the same kernel would look like the following in numba.cuda.

After about 2 weeks of continuous running the numba.cuda code, Garrett was unable to
find any counter examples in the first 50 trillion numbers! The conjecture is still
unproven, however.

We then choose a radius (0.01 for our
tests) and count how many of the
signal or background template points
are within that radius of each data
point. This nearest-neighbors
counting is very computationally
intensive and goes as the number
of templates points. The size of the
circles on to the right represent the
density of template points around
each data point.

Lindsay ran the fits on different
samples ~1000 times and found that
there is a slight bias (~3%) in the
amount of signal extracted by the fit.
She calculated the nearest-neighbors
using the scipy.spatial.dist.cdist
routine. To test the bias with more
template points we needed a faster
routine, and so we implemented a
numba.cuda nearest-neighbor routine,
giving us a speed-up of over 10x!
However the bias still persists, and will
be the subject of further study.

Hardware used
All CPU tests were done on a Intel Xeon CPU E5-1620 v2 @ 3.70GHz (8-core machine, though
only one was used for any given test) with 32 GB of RAM. The build was by Microway.

All GPU tests were performed on an NVIDIA Tesla K40, donated by NVIDIA.

contact Name

Garrett Allen: gm17alle@siena.edu
Poster

P5236

Category: Education & Training - ET01

