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Garrett Allen, a rising-junior Computer Science major at Siena, had become intrigued by 
a conjecture by Siena Mathematics professor, Mohammad Javaheri , called the  Modified 
3x + 1 Conjecture, which we state below.

``Conjecture states that the iteration of the map

on every positive integer ends in the cycle {1, 2, 4}. By viewing the branches of the map 
T(x) comprising a semigroup action on positive integers, we have the following 
modification: Let T1(x) = x/2 and T2(x) = 3x + 1. Let m and n be two positive integers that 
are not divisible by 3. Then there exists a sequence of iterations of T1 and T2 that maps m 
to n. By examining the problem backwards, we verify this modified conjecture for all m, 
n ≤ 1.676 × 1013.”

Garrett had taken a class in Java and written a program to check for counter-examples to 
this conjecture (referred to above). After just a few weeks of playing with some example 
code, he decided to implement the same algorithm in numba.cuda. The results are 
shown below, comparing Java, numba.cuda, and native Python for comparison. The x-
axis shows the number of numbers (array size) that were checked in any one 
function/kernel call.  

When a small amount (<1M) of 
numbers are checked for counter-
examples, we see little difference. For 
larger quantities (>10M), the numba.
cuda is about 10x faster!

While a C-CUDA implementation would 
be even faster, that was not the point of 
this exercise. Garrett did not have 
experience with C, and yet was able to 
indulge his number theory interests 
using GPU programming techniques!
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We start out with a mock dataset representing the data that 
come out of some experiment, and these data are parametrized 
by two variables, X and Y. The density in the center represents 
our peak signal on top of a flat background. For our preminary 
tests, we worked with ~100 signal events and ~900 background 
events (1000 total data points).

Our templates for the 
signal (left) and 
background (right). We ran 
tests with 10k, 100k, and 
1M events in these 
templates. The background 
is uniformly distributed 
and the signal is modeled 
as a double Gaussian. 

This poster details our experiences with exposing undergraduate students to parallel 
processing concepts, specifically on the GPU, using a Python interface, bypassing the usual 
learning path that makes use of the CUDA C-libraries.
 
Parallel processing general and GPU programming in particular has the potential to 
transform insurmountable challenges into tractable problems.

Continuum Analytics (CA) distributes a consistent installation of Python and many useful 
libraries. In addition to this bundling, they also produce their own contributions to the 
HPC-Python ecosystem such as numba, a potential replacement for
numpy. http://continuum.io/

CA also provides a Python interface to CUDA through
their numba and numbapro libraries, both 
distributed through their Anaconda packaging tool.
We used the numba.cuda library as it allowed us
to most closely mimic what one would do in C.

__global__ void kernel (int *a)
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    a[idx] = idx;
}

int main()
{
    .
    .
    kernel<<<grid,block>>>(d_a);
    .
    .
}

from numba import cuda

@numba.cuda.jit("void(float32[:])")
def kernel(arr_a):
    idx = cuda.blockIdx.x*cuda.blockDim.x + cuda.threadIdx.x
    arr_a[idx] = idx
.
.
.
kernel[block_ct,thread_ct](a)

Conclusions and Acknowledgements
 Prior to this work, Garrett had never programmed in any sort of parallel framework and 

Lindsay was not aware of the concept. Garrett made use of the first lesson of Udacity’s 
``Introduction to Parallel Programming” course and slides provided by Continuum 
Analytics to introduce numba.cuda, and in a few weeks was able to pursue his own ideas 
on number theory and contribute to Lindsay’s project, which she was already 
programming in Python. 

We found the Pythonic numba.cuda to be an excellent tool to expose undergraduate 
students to the world of GPU programming. It has a fairly low threshold for entry 
and we plan to continue to explore its efficacy in undergraduate education.

It should be noted that Continuum Analytics did not contribute to this poster, nor were they 
aware of this work, beyond bug reports filed on Github. 

In particle physics (the primary research focus of our group), one is often looking for a 
``bump” or ``peak” on top of some background, which is how new particles can be 
discovered! The traditional approach uses the Maximum Likelihood Method (MLM) in which 
the analyst tests different hypotheses of the shapes, or Probability Distribution Functions 
(PDFs), for signal and background, and the relative fraction of each. If the data are 
multidimensional, correlations between the PDFs must be taken into account, though this may 
not be known a priori. 

In many particle physics analysis, there may not be an analytic function for the PDF and 
other approximation methods must be used. These generally rely on templates generated 
through Monte Carlo techniques and simulations of the detector response.

Lindsay Blake, a rising-junior Physics major explored using the density of ``nearest-neighbors” 
as a stand-in for a PDF, and using the MLM to determine the relative fraction of signal and 
background. The templates are generated from some known distribution for this simple test 
case, though this may be different in a real experiment. The challenge for this type of study is 
calculating the density of nearest neighbors, as this is computationally intensive. 

An outline of the procedure follows. 

It is therefore imperative that we introduce our students 
to these concepts early in their career so that they can 
become comfortable with (and eventually proficient in) 
these frameworks. 

At Siena College, a small liberal-arts college in upstate-
NY, most Computer Science and other Science majors 
will not take a C/C++ course, but they are exposed to 
Python. In the summer of 2014, we explored the idea of 
introducing CUDA programming through a Python 
wrapper and we settled upon the Continuum Analytics 
numba library.

For example, a simple C-CUDA kernel and the call might resemble the following code. 

While the same kernel would look like the following in numba.cuda.

After about 2 weeks of continuous running the numba.cuda code, Garrett was unable to 
find any counter examples in the first 50 trillion numbers! The conjecture is still 
unproven, however. 

We then choose a radius (0.01 for our 
tests) and count how many of the 
signal or background template points 
are within that radius of each data 
point. This nearest-neighbors 
counting is very computationally 
intensive and goes as the number 
of templates points. The size of the 
circles on to the right represent the 
density of template points around 
each data point.

Lindsay ran the fits on different 
samples ~1000 times and found that 
there is a slight bias (~3%) in the 
amount of signal extracted by the fit. 
She calculated the nearest-neighbors 
using the scipy.spatial.dist.cdist 
routine. To test the bias with more 
template points we needed a faster 
routine, and so we implemented a 
numba.cuda nearest-neighbor routine, 
giving us a speed-up of over 10x! 
However the bias still persists, and will 
be the subject of further study. 

Hardware used
All CPU tests were done on a Intel Xeon CPU E5-1620 v2 @ 3.70GHz (8-core machine, though 
only one was used for any given test) with 32 GB of RAM. The build was by Microway.

All GPU tests were performed on an NVIDIA Tesla K40, donated by NVIDIA.
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