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Abstract Multi-GPU based Approach

Preliminary Results

Bisection is a numerically stable algorithm used to find the
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precision of its results. However, on a sequential processor, the

algorithm is suitable for parallel processors because of its highly
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i. Gerschgorin Interval < Testing environment
» The Gerschgorin interval gives the bounds for the eigenvalue . Intel™ Xeon™ E5-2620 CPUs. 64 GB
spectrum of a given square matrix. « NVIDIA™ Tesla™ K20c GPUs, 5 GB
ii. Count(x) function * An average of 30 % speed up on 2 GPUs over single GPU
» The Count(x) function gives the number of eigenvalues less [ ] [ ]
than the number x. It can be used to find the number of Step 2: Run bisection

eigenvalues within an interval (X, y]as follows: Kernels optimized for each Future Work

Count(x, y) = Count (y) — Count (x - -
(% ) (¥) (X) type of intervals until all We are considering two other approaches for the multi-GPU
eigenvalues have been algorithm
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iii. Bisection | approximated i. Evenly dividing the Gerschgorin interval among the GPUs

R | » This makes each GPU independent and reduces GPU-GPU
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Count (1.0) = 4 ii. At the end of step one, assigning the intervals to each GPU so

Count (0,1.0)=2 that each GPU will have to find the same number of
eigenvalues

» This will lead to an even workload among the GPUs
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