
(-1.0,1.0)
4 eigenvalues

(-1.0,0)
2 eigenvalues

(-1.0, -0.5)
1 eigenvalues

(0.5, 0)
1 eigenvalues

(0,1.0)
2 eigenvalues

(0, 0.5)
2 eigenvalues

(0.5, 1)
0 eigenvalues

Multi-GPU based Approach Preliminary Results Abstract
Bisection is a numerically stable algorithm used to find the

eigenvalues of symmetric tridiagonal matrices. It is distinct from

other methods used to solve the eigenvalue problem by the high

precision of its results. However, on a sequential processor, the

algorithm is significantly slow compared to other methods. But the

algorithm is suitable for parallel processors because of its highly

parallelizable features. We have exploited these features to

implement the bisection algorithm on a single GPU. We also

extended the algorithm to multi-GPU platform. Our implementation,

on average, runs 30 % faster on 2 GPUs than on a single GPU. [1]

 Testing environment
• Intel™ Xeon™ E5-2620 CPUs, 64 GB
• NVIDIA™ Tesla™ K20c GPUs, 5 GB

 An average of 30 % speed up on 2 GPUs over single GPU

This research was supported by:

• CUDA Teaching Center Program, NIVIDIA™ Research

• Summer Research Program, Trinity College

Acknowledgement

We are considering two other approaches for the multi-GPU
algorithm
i. Evenly dividing the Gerschgorin interval among the GPUs
 This makes each GPU independent and reduces GPU-GPU

communication
ii. At the end of step one, assigning the intervals to each GPU so

that each GPU will have to find the same number of
eigenvalues
 This will lead to an even workload among the GPUs

Future Work

Multi-GPU Implementation of Bisection Algorithm for
Symmetric Tridiagonal Eigenvalue Problem

Barok Imana, Nam Thai and Peter Yoon
Department of Computer Science, Trinity College, Hartford, CT

[1] Lessig, Christian. "Eigenvalue Computation with CUDA." Oct.

2007.

Reference

Bisection Algorithm

Gerschgorin Interval

Group of Intervals with
one eigenvalue

Result

Group of Intervals with
multiple eigenvalues

GPU 0

Step 1: Run bisection
until the number of
child intervals is close
to 512. And then
divide those child
intervals into intervals
with one eigenvalue
and intervals with
multiple eigenvalues.

GPU 0

GPU 1
Step 2: Run bisection
Kernels optimized for each
type of intervals until all
eigenvalues have been
approximated

i. Gerschgorin Interval
 The Gerschgorin interval gives the bounds for the eigenvalue

spectrum of a given square matrix.

ii. Count(x) function
 The Count(x) function gives the number of eigenvalues less

than the number x. It can be used to find the number of
eigenvalues within an interval (x, y]as follows:

Count(x, y) = Count (y) – Count (x)

iii. Bisection

Count (0) = 2
Count (1.0) = 4
Count (0, 1.0) = 2

Matrix
size

Average running time (sec)
 Speed-up

(16 CPU cores
to 2 GPUs)

Speed-up
(2 GPUs and

1 GPU) 16 CPU
cores

1 GPU 2 GPU

1024 0.114 0.082 0.056 2.0 1.46

2048 0.576 0.156 0.100 5.8 1.56

4096 2.19 0.316 0.194 11.3 1.63

8192 8.90 0.850 0.590 15.1 1.44

16384 35.9 2.210 1.67 21.5 1.32

32768 138 7.360 6.27 22.0 1.17

Gerschgorin Interval

contact name

Barok Imana: barok.imana@trincoll.edu
Poster

P5242

category: DeveloPer - Tools & lIBrarIes - DT04

