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Multi-GPU based Approach Preliminary Results Abstract 
Bisection is a numerically stable algorithm used to find the 

eigenvalues of symmetric tridiagonal matrices. It is distinct from 

other methods used to solve the eigenvalue problem by the high 

precision of its results. However, on a sequential processor, the 

algorithm is significantly slow compared to other methods. But the 

algorithm is suitable for parallel processors because of its highly 

parallelizable features. We have exploited these features to 

implement the bisection algorithm on a single GPU. We also 

extended the algorithm to multi-GPU platform. Our implementation, 

on average, runs 30 % faster on 2 GPUs than on a single GPU. [1] 

  Testing environment 
• Intel™ Xeon™ E5-2620 CPUs, 64 GB 
• NVIDIA™ Tesla™ K20c GPUs, 5 GB 
 

  An average of 30 % speed up on 2 GPUs  over single GPU 
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We are considering two other approaches for the multi-GPU 
algorithm 
i. Evenly dividing the Gerschgorin interval among the GPUs 
 This makes each GPU independent and reduces GPU-GPU 

communication 
ii. At the end of step one, assigning the intervals to each GPU so 

that    each GPU will have to find the same number of 
eigenvalues 
 This will lead to an even workload among the GPUs 
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Bisection Algorithm 

Gerschgorin Interval 

Group of Intervals with 
one eigenvalue 

Result 

Group of Intervals with 
multiple eigenvalues 

GPU 0 

Step 1: Run bisection 
until the number of 
child intervals  is close 
to 512. And then 
divide those child 
intervals into intervals  
with one eigenvalue 
and  intervals with 
multiple eigenvalues.  

GPU 0 

GPU 1 
Step 2: Run bisection 
Kernels optimized for each 
type of intervals until all 
eigenvalues have been 
approximated 

i. Gerschgorin Interval 
 The Gerschgorin interval gives the bounds for the  eigenvalue 

spectrum of a given square matrix.  
 

ii.    Count(x) function  
 The Count(x) function gives the number of eigenvalues less 

than the number x.  It can be used to find the number of 
eigenvalues within  an interval  (x, y]as follows: 

Count(x, y) =  Count (y) – Count (x) 
 

iii.  Bisection  

Count (0) = 2 
Count (1.0) = 4  
Count (0, 1.0) = 2 

Matrix 
size 

Average running time (sec) 
 Speed-up 

(16 CPU cores  
to 2 GPUs) 

Speed-up 
(2 GPUs and            

1 GPU) 16 CPU 
cores 

1 GPU 2 GPU 

1024 0.114 0.082 0.056 2.0 1.46 

2048 0.576 0.156 0.100 5.8 1.56 

4096 2.19 0.316 0.194 11.3 1.63 

8192 8.90 0.850 0.590 15.1 1.44 

16384 35.9 2.210 1.67 21.5 1.32 

32768 138 7.360 6.27 22.0 1.17 

Gerschgorin Interval 
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