CATEGORY: DEVELOPER - TOOLS & LIBRARIES - DT04

GP TECHNOLOGY
CONFERENCE

::::::::::::

e Multi-GPU Implementation of Bisection Algorithm for | L
" Bt Symmetric Tridiagonal Eigenvalue Problem - e

W— w—
Tl’il’lity Coﬂege Barok Imana, Nam Thai and Peter Yoon Trinity College

HARTFORD "CONNECTICUT HARTFORD "CONNECTICUT

Department of Computer Science, Trinity College, Hartford, CT

Abstract Multi-GPU based Approach

Preliminary Results

Bisection is a numerically stable algorithm used to find the
Gerschgorin Interval

eigenvalues of symmetric tridiagonal matrices. It is distinct from Average running time (sec)

Speed-up Speed-up
(16 CPU cores | (2 GPUs and

16 CPU 1GPU 2cpPy BHAE 1 GPU)
cores

other methods used to solve the eigenvalue problem by the high

Step 1: Run bisection

until the number of
algorithm is significantly slow compared to other methods. But the [] child intervals is close

to 512. And then

precision of its results. However, on a sequential processor, the

algorithm is suitable for parallel processors because of its highly

divide those child
parallelizable features. We have exploited these features to __—1 intervals into intervals 0.114 0.082 0-056 2.0 1.46
implement the bisection algorithm on a single GPU. We also with one eigenvalue Zsciy 0576 0156 0.100 5.8 1.56
and intervals with
extended the algorithm to multi-GPU platform. Our implementation, multiple eigenvalues. 4096 2.19 0316 0.194 11.3 1.63
on average, runs 30 % faster on 2 GPUs than on a single GPU. [1] 8.90 0.850 0.590 15 1 1 44
. . . 16384 35.9 2.210 1.67 21 5 132
Bisection AIgO”th m Group of Intervals with Group of Intervals with 32768 138 7360 6.27 290 147
one eigenvalue multiple eigenvalues
i. Gerschgorin Interval < Testing environment
» The Gerschgorin interval gives the bounds for the eigenvalue . Intel™ Xeon™ E5-2620 CPUs. 64 GB
spectrum of a given square matrix. « NVIDIA™ Tesla™ K20c GPUs, 5 GB
ii. Count(x) function * An average of 30 % speed up on 2 GPUs over single GPU
» The Count(x) function gives the number of eigenvalues less [] []
than the number x. It can be used to find the number of Step 2: Run bisection

eigenvalues within an interval (X, y]as follows: Kernels optimized for each Future Work

Count(x, y) = Count (y) — Count (x - -
(%) (¥) (X) type of intervals until all We are considering two other approaches for the multi-GPU
eigenvalues have been algorithm

. . Gerschgorin Interval ‘
iii. Bisection | approximated i. Evenly dividing the Gerschgorin interval among the GPUs

R | » This makes each GPU independent and reduces GPU-GPU
4 eigenvalues (Count (0) = 2 A esult . " communication

Count (1.0) = 4 ii. At the end of step one, assigning the intervals to each GPU so

Count (0,1.0)=2 that each GPU will have to find the same number of
eigenvalues

» This will lead to an even workload among the GPUs

l 2 eigenvalues

2 eigenvalues

Acknowledgement
| | | This research was supported by: Reference
 CUDA Teaching Center Program, NIVIDIA™ Research [1] Lessig, Christian. "Eigenvalue Computation with CUDA." Oct.
1 eigenvalues 1 eigenvalues 2 eigenvalues 0 eigenvalues » Summer Research Program, Trinity College 2007.

