
Experimental environment
CPU：Intel  Xeon X7460
GPU：NVIDIA GeForce GTX 680
Input image: Lena (256x256, 512x512, 1024x1204)
Character code: JIS Kanji code (7310 characters, 16x16)

Koji Nakano
Department of Information  Engineering, Hiroshima University

Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527, JAPAN

Abstract
We propose a new technique to generate a 
high-quality ASCII art image using Local 
Exhaustive Search(LES). We have implemented 
our new technique in a GPU to accelerate its 
computation. The experimental results show 
that the GPU implementation can achieve a 
speedup factor up to about 57 over the CPU 
implementation.

High-Quality ASCII ART GENERATION with GPU Acceleration

Original gray-scale image ASCII art

A gray-scale image The ASCII art

Each block

Partition of the size of characters

. ^ j Ｙ ＋ 少 子 元 古 円 連 郎 酒 連 梅 陽 鯱 鬱 鬮 靏

‘ ― ∴ ぺ × 仁 川 王 五 位 細 畑 桶 細 勇 農 輛 躓 髑 醴

Intensity 
level

character Computing time
Image size 256×256 512×512 1024×1024

CPU [s] 4.06 16.1 64.2
GPU [s] 0.125 0.331 1.12

Speed-up 32.6 48.5 57.1

Our method

Conventional method

The experimental results show that the GPU implementation can achieve a speedup 
factor up to about 57 over its CPU implementation.

16

16

A binary image

Similarity

The blurred image The original gray-scale image

For each character, the total error
is computed.

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(k-1,0)

Thread
(k-1, k-1)

Thread
(1,pk1)

Thread
(k-1,1)

Thread
(0,k-1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(k-1,0)

Thread
(k-1, k-1)

Thread
(1,k-1)

Thread
(k-1,1)

Thread
(0,k-1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(k-1,0)

Thread
(k-1, k-1)

Thread
(1,k-1)

Thread
(k-1,1)

Thread
(0,k-1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(k-1,0)

Thread
(k-1, k-1)

Thread
(1,k-1)

Thread
(k-1,1)

Thread
(0,k-1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Thread
(k-1,0)

Thread
(k-1, k-1)

Thread
(1,p-1)

Thread
(k-1,1)

Thread
(0,p-1)

ｋ

Block(x+1,y)Block(x,y)Block(x-1,y)

Block(x-1,y-1) Block(x+1,y-1)

Partition the size 
of characters

A binary image

① ① ① ①

① ① ① ①

① ① ① ①

① ① ① ①

② ② ② ②

② ② ② ②

② ② ② ②

② ② ② ②

③ ③ ③ ③

③ ③ ③ ③

③ ③ ③ ③

③ ③ ③ ③

④ ④ ④ ④

④ ④ ④ ④

④ ④ ④ ④

④ ④ ④ ④

① ② ① ② ① ② ① ②

③ ④ ③ ④ ③ ④ ③ ④

① ② ① ② ① ② ① ②

③ ④ ③ ④ ③ ④ ③ ④

① ② ① ② ① ② ① ②

③ ④ ③ ④ ③ ④ ③ ④

① ② ① ② ① ② ① ②

③ ④ ③ ④ ③ ④ ③ ④

ASCII Art
An ASCII art is a matrix of characters reproducing 
an original  image.

A conventional method
The idea of a conventional ASCII art generation is 
to partition an original image into blocks of the 
same size as characters. Each block is assigned to 
a character such that each character reproduces 
the intensity level of the corresponding block.

Blurring

The similarity can be computed with the sum of  the 
difference between the blurred image and the original 
gray-scale image with respect to intensity level.

A generated binary 
image

The blurred 
image

The original gray-scale 
image

Sim
ilarity

Our proposed method
Our technique is inspired by the digital half-toning using the local exhaustive search(LES) to optimize binary images based on 
the human visual system [1]. Because generated ASCII arts are binary images, LES can be applied to  ASCII art generation.

Acceleration using the GPU
Each CUDA block replaces the assigned block by 
the selected character obtained with LES in parallel.

Parallel Execution
Since LES for adjacent blocks cannot 
be executed in parallel, we partition 
blocks into four groups. In each 
group, the affected regions of all 
blocks do not overlap each other. 

The evaluation method based on 
the human visual system We find a replacement character which 

minimizes the total error over all characters.

Outline of our algorithm

If the blurred image is very similar to the original 
image, the generated binary image reproduces the 
original image. 

This replacement procedure by the 
raster scan order is repeated until 
one round of the raster scan order 
search does not replace characters.

Raster scan order

Experimental Result
For the purpose of comparison, we also implemented the sequential 
algorithm on the CPU.

[1] Yasuaki Ito and Koji Nakano, FM Screening by the Local 
Exhaustive Search with Hardware Acceleration, International 
Journal of Foundations of Computer Science, Vol. 16, No.1, 
pp.89–104, February 2005.

contact Name 

Koji Nakano: nakano@cs.hiroshima-u.ac.jp
Poster 

P5256

Category: Video & Image Processing - Vi06


