
CG Kernels (𝑫𝑫𝒘𝒘 Multiplication) CG Kernels (𝑴𝑴𝟓𝟓 Multiplication) Benchmarks

Large-Scale Simulation of Lattice QCD with GTX-TITAN
Ting-Wai Chiu1,2, Yu-Chih Chen1, Han-Yi Chou1

1 Physics Department, National Taiwan University, Taipei 10617, Taiwan
2 Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

Abstract
 We present the state-of-the-art simulation of lattice QCD with dynamical (u,d,s,c) quarks at National Taiwan University. Using a unit of two GTX-TITAN, lattice QCD with (1+1+1+1)-flavors of domain-wall quarks can be
simulated on the 323 ×64 lattice, attaining sustained 780 Gflops/s. This study is vital for understanding QCD (Quantum Chromodynamics), the fundamental theory for the interaction between quarks and gluons, which
manifests as the strong interaction inside the nucleus and plays an important role in the evolution of the universe.

GPU and CUDA Architecture

Lattice QCD and Domain-Wall Fermions

 Quantum Chromodynamics (QCD) is the fundamental theory for the
interaction between quarks and gluons. It manifests as the short-range
strong interaction in the nucleus, and plays an important role in the
evolution of the early universe, from the quark-gluon “plasma” phase to
the hadron phase. To solve QCD is a grand challenge, since it requires the
largest scale numerical simulation of the discretized action of QCD on the
4-dimensional space-time lattice[1].

Exact One Flavor Algorithm(EOFA) EOFA vs. RHMC

 Recently, we have devised a novel pseudofermion action for hybrid
Monte Carlo simulation of one-flavor domain-wall fermion (DWF) in lattice
QCD. This pseudofermion action is exact, without taking square-root,
unlike the widely-used rational hybrid Monte-Carlo algorithm (RHMC)
which is inexact, requires an additional memory space which is
prohibitively expensive for GPUs.

3. Y. C. Chen and T. W. Chiu [TWQCD Collaboration], Phys. Lett. B 738, 55 (2014)

 To demonstrate the practicality of EOFA, we perform the first dynamical
simulation of the (1+1)-flavors QCD with DWF, which also provides gauge
ensembles for studying the isospin symmetry breaking effects in the
hadron spectrum as well as other physical quantities.
 We compute the valence quark propagator with the point source at the
origin, and with parameters exactly the same as those of the sea-quarks. In
Fig. 3, we plot the time-correlation function C(t) and the effective mass of
the charged pion [3].

𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

=
20 + 3(2 + 2𝑁𝑁𝑝𝑝)𝑁𝑁𝑠𝑠

32 + 10.5𝑁𝑁𝑠𝑠

is the ratio of the memory requirement between RHMC and EOFA, where
𝑁𝑁𝑠𝑠 is the number of lattice sites in the fifth dimension of DWF, and 𝑁𝑁𝑝𝑝 is
the number of poles used in the rational approximation for RHMC.

 Fig. 2 For 𝑁𝑁𝑝𝑝 = 12 and 𝑁𝑁𝑠𝑠 = 16, the ratio is
6.58 for any 4D lattices. In other words, if EOFA
requires 12 GB to perform HMC of lattice QCD
with DWF on the 323 × 64 × 16 lattice, then
RHMC with 12 poles needs at least 79 GB to
perform the simulation.

 The memory-saving feature of EOFA is crucial for large-scale simulations
of lattice QCD with GPUs, in view of each GPU having enormous floating-
point computing power but limited device memory.
 For example, using EOFA, two GPUs (each of 6 GB device memory, e.g.,
Nvidia GTX-TITAN) working together with OpenMP is capable to simulate
lattice QCD with (u, d, s, c) DWF quarks on the 323 × 64 × 16 lattice,
attaining sustained 780 Gflops for two GTX-TITANs.

EOFA vs. RHMC and 1+1 Flavor simulation

 (a) (b)
 Fig. 3 (a) The time-correlation function of charged pion. (b) The effective mass of charged pion

 Since 2009, researchers at National Taiwan University have successfully
set up a GPU cluster which currently constitutes of 350 GPUs. This is the
first GPU supercomputer in Taiwan. We have developed highly efficient
CUDA codes for the most computationally challenging problems in high
energy physics, condensed matter physics, and astrophysics. In 2014, our
GPU cluster attains 150 Teraflops (sustained) for lattice QCD. During 2009-
2014, we have developed efficient algorithms and CUDA codes for the
ground-breaking simulation of lattice QCD with exact chiral symmetry. Now
we are one of the three lattice QCD groups (RBC-UKQCD, JLQCD, TWQCD)
around the world who can perform such a demanding large-scale lattice
QCD simulation incorporating dynamical quarks with exact chiral symmetry.
Remarkably, we have succeeded in performing our simulations using a GPU
cluster, rather than expensive supercomputers (e.g., IBM BlueGene/Q).
 One of the most crucial part in the simulation program is the multi-GPU
Conjugate Gradient (CG) solver with OpenMP. In the followings, the
implementation and optimization of the two main kernels in matrix-vector
multiplication in our CG calculation are discussed.

 To summarize, in the last 6 years (2009-2014), TWQCD Collaboration has
devised novel algorithms and developed highly efficient CUDA codes for
solving lattice QCD with domain-wall fermion. This not only asserts that
GPU is the most cost-effective device for large-scale simulation of lattice
QCD, but also provides ground-breaking results in the zero temperature
and the finite temperature lattice QCD with exact chiral symmetry.

 Summary

 Moreover, since quarks are relativistic fermions, the 5-th dimension is
introduced such that massless quarks with exact chiral symmetry can be
realized at finite lattice spacing, on the boundaries of the fifth dimension,
the so-called domain-wall fermion (DWF)[2]. The effective action of DWF
can be written as

Kenneth G. Wilson
Nobel Prize (1982)

 For the QCD action 𝑺𝑺 = 𝑺𝑺𝑮𝑮(𝑼𝑼) + 𝝍𝝍 𝑫𝑫(𝑼𝑼)𝝍𝝍, any physical
observables 𝓞𝓞(𝝍𝝍,𝝍𝝍,𝑼𝑼) can be obtained from

𝒪𝒪(𝜓𝜓, 𝜓𝜓, 𝑈𝑈) =
 𝑑𝑑𝑑𝑑𝑑𝑑𝜓𝜓 𝑑𝑑𝜓𝜓𝜓𝜓(𝜓𝜓, 𝜓𝜓, 𝑈𝑈)𝑒𝑒−𝑆𝑆

 𝑑𝑑𝑑𝑑𝑑𝑑𝜓𝜓 𝑑𝑑𝜓𝜓𝑒𝑒−𝑆𝑆

 Then we can put this integral on the lattice and use Hybrid Monte Carlo
(HMC) method to compute this integral. The most time-consuming part in
HMC is to solve a linear system by the conjugate gradient algorithm(CG).
By using GPU, we can boost our simulation dramatically.

1. K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
2. D. B. Kaplan, Phys. Lett. B 288, 342 (1992)

 Salient Features of the Quark Matrix 𝑫𝑫𝒎𝒎(𝑼𝑼)
• 𝐷𝐷𝑚𝑚 is a sparse matrix, only involving the nearest neighbor interactions.
• Iterative algorithms (conjugate gradient, Lanczos, etc.) are used, which

involve the matrix-vector multiplication.
• CUDA kernels can be optimized for the matrix-vector ops. in QCD.

𝐷𝐷𝑤𝑤 𝑥𝑥,𝑥𝑥′ =
−1
2 1− 𝛾𝛾𝜇𝜇 𝑈𝑈𝜇𝜇 𝑥𝑥 𝛿𝛿𝑥𝑥+𝜇𝜇 ,𝑥𝑥′ + 1 + 𝛾𝛾𝜇𝜇 𝑈𝑈−𝜇𝜇 𝑥𝑥 𝛿𝛿𝑥𝑥−𝜇𝜇 ,𝑥𝑥′

𝜇𝜇

 Hopping terms
 Texture is used for caching data
 Internal loop is used to reuse the read-in data
 Peer-to-Peer access is enabled to load the hopping term from

other devices
 Link variables multiplication
 For a given 𝜇𝜇 , 𝑈𝑈 is the same in fifth dimension, hence the shared

memory is used
 Gamma matrix multiplication
 Only the left-handed Dirac indices are calculated.

From threads and blocks indices, calculate x, y, z, s

Iteration for t
To reuse the data; significant performance
enhancement; divide loops to each device

Iteration for 8 directions

Load vector (texture to register)

Load link variable (texture to shared memory)

Gamma matrix multiplication
 (one left-handed components)

Link variable multiplication

Loop expand

Restore right-handed components

Write output to global memory

All loops
here are
expanded

Memory
bandwidth
bound

Block diagonal in chiral basis
Does not depend on x, y, z, t or color-Dirac indices
It is the constant matrix multiplication in the 5th space
Use share memory to store source vectors
Internal loop to reuse the read-in 𝑴𝑴𝟓𝟓 matrix

From threads and blocks indices, calculate x, y, z, s

Iteration for t
and part of z

To reuse the data;
divide t loops to each
device

Load 𝑀𝑀5 matrix (texture to register)

Load vector (texture to shared memory)

𝑀𝑀5 matrix multiplication

Write output to global memory

Iteration for 24 color/Dirac/complex indices

Loops expanded

Loops expanded

𝐷𝐷𝑚𝑚 𝑈𝑈 = 𝐷𝐷𝑤𝑤 𝑈𝑈 +𝑀𝑀5(𝑚𝑚)
where the definition of 𝐷𝐷𝑤𝑤 and 𝑀𝑀5 are given above.

𝑀𝑀5 = 4 −𝑚𝑚0 + 𝜔𝜔
−1
2 [𝑐𝑐 1 + 𝐿𝐿 1 − 𝐿𝐿 −1 + 𝑑𝑑𝜔𝜔−1]−1𝜔𝜔

−1
2

−1

Thread

Block Shared Memory

Device

Global Memory

Constant Memory/
Texture Cache

Host Memory

 We compare the performance of the exact one-flavor algorithm (EOFA)
with RHMC, and find that EOFA outperforms RHMC, no matter in terms of
the efficiency or the memory consumption[3].

 The main idea in HMC is to find a pseudo-fermion action 𝑆𝑆𝑝𝑝𝑝𝑝 such that

 𝑑𝑑𝜓𝜓 𝑑𝑑𝜓𝜓𝑒𝑒−𝜓𝜓 𝐷𝐷(𝑈𝑈)𝜓𝜓 ∝ det 𝐷𝐷𝑇𝑇(𝑈𝑈) ∝ 𝑑𝑑𝜙𝜙†𝑑𝑑𝜙𝜙𝑒𝑒−𝑆𝑆𝑝𝑝𝑝𝑝

where 𝑆𝑆𝑝𝑝𝑝𝑝 ≡ 𝜙𝜙†𝐷𝐷 (𝑈𝑈)𝜙𝜙. In principle, there are infinite possibilities of 𝑆𝑆𝑝𝑝𝑝𝑝
can be used to satisfy the above equation. The crucial point here is finding
a suitable 𝐷𝐷 (𝑈𝑈) which can be calculated efficiently.

 For our exact one flavor algorithm (EOFA) [3], the 𝑆𝑆𝑝𝑝𝑝𝑝 is

The integral
 we want

The integral
 we calculate

 For the wildly used RHMC, the 𝑆𝑆𝑝𝑝𝑝𝑝 can be written as

where the subscripts 1 and m are labeled for cutoff and quark mass
respectively. With this action, one can use rational approximation and
multi mass shift conjugate gradient (MMCG) to calculate the roots. But it
needs copious memories to do the calculation efficiently, which means
that it is very hard to implement RHMC on GPU.

𝑆𝑆𝑝𝑝𝑝𝑝 = 𝜙𝜙† 𝐷𝐷1†𝐷𝐷1
4 𝐷𝐷𝑚𝑚†𝐷𝐷𝑚𝑚

−1
𝐷𝐷1†𝐷𝐷1

4 𝜙𝜙

𝑆𝑆𝑝𝑝𝑝𝑝 = 0, 𝜙𝜙1† 𝐼𝐼 − 𝑘𝑘Ω−
𝑇𝑇 1
𝐻𝐻1

Ω−
0
𝜙𝜙1 + 𝜙𝜙2

†, 0 𝐼𝐼 + 𝑘𝑘Ω+
𝑇𝑇 1
𝐻𝐻2

Ω+
𝜙𝜙2
0

where 𝐻𝐻1 and 𝐻𝐻2 are composed of 𝐷𝐷𝑚𝑚 and 𝑀𝑀5 matrix, k is a constant, and
Ω± are 5th dimensional constant matrices. This action possesses all good
properties required for the HMC simulation and is more efficient than
RHMC. Moreover, the memory usage of EOFA is much less than RHMC.
Thus we can perform HMC simulation with this exact action on GPU.

 We did the tests of 𝑁𝑁𝑓𝑓 = 1 and 𝑁𝑁𝑓𝑓 = (2 + 1) QCD on the 163 × 32 × 16
lattice, for the conventional DWF . The details of the simulation of 2-flavors
of DWF have been presented in Ref. [4]. After the initial thermalization of
300 trajectories (done with a GPU), we pick one configuration and use 4
cores CPU of i7-4820K CPU@3.70GHz to continue the HMC simulation with
EOFA and RHMC respectively, and accumulate 5 trajectories.

 With the statistics of five trajectories (all accepted), the average time
(seconds) for generating one HMC trajectory (after thermalization) is listed
below

4. T. W. Chiu [TWQCD Collaboration], J. Phys. Conf. Ser. 454, 012044 (2013)

EOFA RHMC
𝑵𝑵𝒇𝒇 = 𝟏𝟏 93241(290) 119445(408)

𝑵𝑵𝒇𝒇 = 𝟐𝟐 + 𝟏𝟏 143099(833) 172569(588)

CG (mixed prec.) attains 410 GFLOPS on GTX-TITAN

All numbers are in unit of GFLOPS, tested with DWF on 163 x 32 x 16 lattice

Dw(Single) M5(Single) Dw(Double) M5(Double) CG(Mixed)

GTX285 177 346 33 69 181

C1060 128 290 29 61 132

C2070 171 244 22 96 156

GTX480 293 309 37 116 252

GTX580 338 445 41 150 317

GTX TITAN 440 578 53 195 410

GTX TITAN Z 454 438 123 132 410

1 GPU card 2 GPU cards Speedup

GTX680 248 453 1.83
GTX690 475 942 1.98
K20c 286 535 1.87
GTX TITAN 410 781 1.90
GTX TITAN Z 410 780 1.90

2 GPU 4 GPU Speedup
GTX TITAN/Z 780 1350 1.73

All numbers are in unit of GFLOPS, tested with DWF on 323 x 64 x 16 lattice

All numbers are in unit of GFLOPS, tested with LQCD on 243 x 48 x 16 lattice

contact Name

Ting-Wai Chiu: twchiu@phys.ntu.edu.tw
Poster

P5258

Category: Computational Physics - CP14

