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Abstract 
    We present the state-of-the-art simulation of lattice QCD with dynamical (u,d,s,c) quarks at National Taiwan University. Using a unit of two GTX-TITAN, lattice QCD with (1+1+1+1)-flavors of domain-wall quarks can be 
simulated on the 323 ×64 lattice, attaining sustained 780 Gflops/s. This study is vital for understanding QCD (Quantum Chromodynamics), the fundamental theory for the interaction between quarks and gluons, which 
manifests as the strong interaction inside the nucleus and plays an important role in the evolution of the universe. 

GPU and CUDA Architecture 

Lattice QCD and Domain-Wall Fermions 

   Quantum Chromodynamics (QCD) is the fundamental theory for the 
interaction between quarks and gluons. It manifests as the short-range 
strong interaction in the nucleus, and plays an important role in the 
evolution of the early universe, from the quark-gluon “plasma” phase to 
the hadron phase. To solve QCD is a grand challenge, since it requires the 
largest scale numerical simulation of the discretized action of QCD on the 
4-dimensional space-time lattice[1].  

Exact One Flavor Algorithm(EOFA) EOFA vs. RHMC 

    Recently, we have devised a novel pseudofermion action for hybrid 
Monte Carlo simulation of one-flavor domain-wall fermion (DWF) in lattice 
QCD. This pseudofermion action is exact, without taking square-root, 
unlike the widely-used rational hybrid Monte-Carlo algorithm (RHMC) 
which is inexact, requires an additional memory space which is 
prohibitively expensive for GPUs. 

3.  Y. C. Chen and T. W. Chiu [TWQCD Collaboration], Phys. Lett. B 738, 55 (2014)   

   To demonstrate the practicality of EOFA, we perform the first dynamical 
simulation of the (1+1)-flavors QCD with DWF, which also provides gauge 
ensembles for studying the isospin symmetry breaking effects in the 
hadron spectrum as well as other physical quantities. 
   We compute the valence quark propagator with the point source at the 
origin, and with parameters exactly the same as those of the sea-quarks. In 
Fig. 3, we plot the time-correlation function C(t) and the effective mass of 
the charged pion [3]. 

𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

=
20 + 3(2 + 2𝑁𝑁𝑝𝑝)𝑁𝑁𝑠𝑠

32 + 10.5𝑁𝑁𝑠𝑠
 

is the ratio of the memory requirement between RHMC and EOFA, where  
𝑁𝑁𝑠𝑠 is the number of lattice sites in the fifth dimension of DWF, and  𝑁𝑁𝑝𝑝 is 
the number of poles used in the rational approximation for RHMC.  

   Fig. 2   For 𝑁𝑁𝑝𝑝 = 12 and 𝑁𝑁𝑠𝑠 = 16, the ratio is 
6.58 for any 4D lattices. In other words, if EOFA 
requires 12 GB to perform HMC of lattice QCD 
with DWF on the 323 × 64 × 16 lattice, then 
RHMC with 12 poles needs at least 79 GB to 
perform the simulation.  

   The memory-saving feature of EOFA is crucial for large-scale simulations 
of lattice QCD with GPUs, in view of each GPU having enormous floating-
point computing power but limited device memory.  
    For example, using EOFA, two GPUs (each of 6 GB device memory, e.g., 
Nvidia GTX-TITAN) working together with OpenMP is capable to simulate 
lattice QCD with (u, d, s, c) DWF quarks on the 323 × 64 × 16 lattice, 
attaining sustained 780 Gflops for two GTX-TITANs. 

EOFA vs. RHMC and 1+1 Flavor simulation 

  (a)   (b) 
   Fig. 3  (a) The time-correlation function of charged pion. (b) The effective mass of charged pion 

   Since 2009, researchers at National Taiwan University have successfully 
set up a GPU cluster which currently constitutes of 350 GPUs. This is the 
first GPU supercomputer in Taiwan. We have developed highly efficient 
CUDA codes for the most computationally challenging problems in high 
energy physics, condensed matter physics, and astrophysics. In 2014, our 
GPU cluster attains 150 Teraflops (sustained) for lattice QCD. During 2009-
2014, we have developed efficient algorithms and CUDA codes for the 
ground-breaking simulation of lattice QCD with exact chiral symmetry. Now 
we are one of the three lattice QCD groups (RBC-UKQCD, JLQCD, TWQCD) 
around the world who can perform such a demanding large-scale lattice 
QCD simulation incorporating dynamical quarks with exact chiral symmetry. 
Remarkably, we have succeeded in performing our simulations using a GPU 
cluster, rather than expensive supercomputers (e.g., IBM  BlueGene/Q).  
    One of the most crucial part in the simulation program is the multi-GPU 
Conjugate Gradient (CG) solver with OpenMP. In the followings, the 
implementation and optimization of the two main kernels in matrix-vector 
multiplication in our CG calculation are discussed. 

   To summarize, in the last 6 years (2009-2014), TWQCD Collaboration  has 
devised novel algorithms and developed highly efficient CUDA codes for 
solving lattice QCD with domain-wall fermion. This not only asserts that 
GPU is the most cost-effective device for large-scale simulation of lattice 
QCD, but also provides ground-breaking results in the zero temperature 
and the finite temperature lattice QCD with exact chiral symmetry. 

   Summary 

   Moreover, since quarks are relativistic fermions, the 5-th dimension is 
introduced such that massless quarks with exact chiral symmetry can be 
realized at finite lattice spacing, on the boundaries of the fifth dimension, 
the so-called domain-wall fermion (DWF)[2].  The effective action of DWF 
can be written as 

Kenneth G. Wilson 
Nobel Prize (1982) 

   For the QCD action 𝑺𝑺 = 𝑺𝑺𝑮𝑮(𝑼𝑼) + 𝝍𝝍 𝑫𝑫(𝑼𝑼)𝝍𝝍, any physical 
observables 𝓞𝓞(𝝍𝝍,𝝍𝝍,𝑼𝑼) can be obtained from 

𝒪𝒪(𝜓𝜓, 𝜓𝜓, 𝑈𝑈) =
 𝑑𝑑𝑑𝑑𝑑𝑑𝜓𝜓 𝑑𝑑𝜓𝜓𝜓𝜓(𝜓𝜓, 𝜓𝜓, 𝑈𝑈)𝑒𝑒−𝑆𝑆

 𝑑𝑑𝑑𝑑𝑑𝑑𝜓𝜓 𝑑𝑑𝜓𝜓𝑒𝑒−𝑆𝑆  

   Then we can put this integral on the lattice and use Hybrid Monte Carlo 
(HMC) method to compute this integral. The most time-consuming part in 
HMC is to solve a linear system by the conjugate gradient algorithm(CG). 
By using GPU, we can boost  our simulation dramatically. 

1. K. G. Wilson, Phys. Rev. D 10, 2445 (1974).   
2. D. B. Kaplan, Phys. Lett. B 288, 342 (1992) 

   Salient Features of the Quark Matrix 𝑫𝑫𝒎𝒎(𝑼𝑼) 
• 𝐷𝐷𝑚𝑚 is a sparse matrix, only involving the nearest neighbor interactions. 
• Iterative algorithms (conjugate gradient, Lanczos, etc.) are used, which 

involve the matrix-vector multiplication. 
• CUDA kernels can be optimized for the matrix-vector  ops.  in QCD. 
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 Hopping terms 
 Texture is used for caching data 
 Internal loop is used to reuse the read-in data 
 Peer-to-Peer access is enabled to load the hopping  term from 

other devices 
 Link variables multiplication 
 For a given 𝜇𝜇 , 𝑈𝑈 is the same in fifth dimension, hence the shared 

memory is used 
 Gamma matrix multiplication 
 Only the left-handed Dirac indices are calculated. 

From threads and blocks indices, calculate x, y, z, s 

Iteration for t 
To reuse the data; significant performance 
enhancement; divide loops to each device 

Iteration for  8 directions 

Load vector (texture to register)  

Load link variable (texture to shared memory) 

Gamma matrix multiplication 
 (one left-handed components) 

Link variable multiplication 

Loop expand 

Restore right-handed components 

Write output to global memory 

All loops 
here are 
expanded 
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Block diagonal in chiral basis 
Does not depend on x, y, z, t or color-Dirac indices 
It is the constant matrix multiplication in the 5th space 
Use share memory to store source vectors 
Internal loop to reuse the read-in 𝑴𝑴𝟓𝟓 matrix 

From threads and blocks indices, calculate x, y, z, s 

Iteration for t 
and part of z  

To reuse the data; 
divide t loops to each 
device 

Load 𝑀𝑀5 matrix (texture to register)  

Load vector (texture to shared memory) 

𝑀𝑀5 matrix multiplication 

Write output to global memory 

Iteration for 24 color/Dirac/complex indices  

Loops expanded 

Loops expanded 

𝐷𝐷𝑚𝑚 𝑈𝑈 = 𝐷𝐷𝑤𝑤 𝑈𝑈 +𝑀𝑀5(𝑚𝑚) 
where the definition of 𝐷𝐷𝑤𝑤 and 𝑀𝑀5 are given above. 
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   We compare the performance of the exact one-flavor algorithm (EOFA) 
with RHMC, and find that EOFA outperforms RHMC, no matter in terms of 
the efficiency or the memory consumption[3].  

    The main idea in HMC is to find a pseudo-fermion action 𝑆𝑆𝑝𝑝𝑝𝑝 such that 

 𝑑𝑑𝜓𝜓 𝑑𝑑𝜓𝜓𝑒𝑒−𝜓𝜓 𝐷𝐷(𝑈𝑈)𝜓𝜓 ∝ det 𝐷𝐷𝑇𝑇(𝑈𝑈) ∝  𝑑𝑑𝜙𝜙†𝑑𝑑𝜙𝜙𝑒𝑒−𝑆𝑆𝑝𝑝𝑝𝑝  

where 𝑆𝑆𝑝𝑝𝑝𝑝 ≡ 𝜙𝜙†𝐷𝐷 (𝑈𝑈)𝜙𝜙. In principle, there are infinite possibilities of 𝑆𝑆𝑝𝑝𝑝𝑝 
can be used to satisfy the above equation. The crucial point here is finding 
a suitable 𝐷𝐷 (𝑈𝑈) which can be calculated efficiently.     

    For our exact one flavor algorithm (EOFA) [3],  the 𝑆𝑆𝑝𝑝𝑝𝑝 is 

The integral 
 we want 

The integral 
 we calculate 

    For the wildly used RHMC, the 𝑆𝑆𝑝𝑝𝑝𝑝 can be written as  

where the subscripts 1 and m are labeled for cutoff and quark mass 
respectively. With this action, one can use rational approximation and 
multi mass shift conjugate gradient (MMCG) to calculate the roots. But it 
needs copious memories to do the calculation efficiently, which means 
that it is very hard to implement RHMC on GPU. 

𝑆𝑆𝑝𝑝𝑝𝑝 = 𝜙𝜙† 𝐷𝐷1†𝐷𝐷1
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where 𝐻𝐻1 and  𝐻𝐻2 are composed of 𝐷𝐷𝑚𝑚 and 𝑀𝑀5 matrix, k is a constant, and 
Ω± are 5th dimensional constant matrices.  This action possesses all good 
properties required for the HMC simulation and is more efficient than 
RHMC. Moreover, the memory usage of EOFA is much less than RHMC. 
Thus we can perform HMC simulation with this exact action on GPU. 

   We did the tests of 𝑁𝑁𝑓𝑓 = 1 and 𝑁𝑁𝑓𝑓 = (2 + 1) QCD on the 163 × 32 × 16 
lattice, for the conventional DWF . The details of the simulation of 2-flavors 
of DWF have been presented in Ref. [4]. After the initial thermalization of 
300 trajectories (done with a GPU), we pick one configuration and use 4 
cores CPU of i7-4820K CPU@3.70GHz to continue the HMC simulation with 
EOFA and RHMC respectively, and accumulate 5 trajectories.  

 With the statistics of five trajectories (all accepted), the average time 
(seconds) for generating one HMC trajectory (after thermalization) is listed 
below   

4.  T. W. Chiu [TWQCD Collaboration], J. Phys. Conf. Ser. 454, 012044 (2013) 

EOFA  RHMC 
𝑵𝑵𝒇𝒇 = 𝟏𝟏 93241(290) 119445(408) 

𝑵𝑵𝒇𝒇 = 𝟐𝟐 + 𝟏𝟏 143099(833) 172569(588) 

CG (mixed prec.) attains 410 GFLOPS on GTX-TITAN 

All numbers are in unit of GFLOPS, tested with DWF on 163 x 32 x 16 lattice 

Dw(Single) M5(Single) Dw(Double) M5(Double) CG(Mixed) 

GTX285 177 346 33 69 181 

C1060 128 290 29 61 132 

C2070 171 244 22 96 156 

GTX480 293 309 37 116 252 

GTX580 338 445 41 150 317 

GTX TITAN 440 578 53 195 410 

GTX TITAN Z 454 438 123 132 410 

1 GPU card  2 GPU cards Speedup 

GTX680 248 453 1.83 
GTX690 475 942 1.98 
K20c 286 535 1.87 
GTX TITAN 410 781 1.90 
GTX TITAN Z 410 780 1.90 

2 GPU   4 GPU  Speedup 
GTX TITAN/Z 780 1350 1.73 

All numbers are in unit of GFLOPS, tested with DWF on 323 x 64 x 16 lattice 

All numbers are in unit of GFLOPS, tested with LQCD on 243 x 48 x 16 lattice 
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