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Proposed Method Experimental Results

We present and discuss how a dynamlc graph can be processed efficiently on Contrary to the previous approach, which employs array-based data structure, our We compared our framework with Medusa, a GPU-accelerated framework that uses a

a GPU. In particular, irregular dynamic data structure is required to realize framework allows vertices to have own list for receiving messages. By using this list-based static data structure for fixed graphs. For the Boruvka algorithm, our framework was

topology mutation, which is a fundamental operation for 50|V'n8 some data structure, a message can be sent by insertion into the receiver's list. Our data structure three times faster than Medusa. In contrast, our framework was 50-90% slower than

|mportant classes of graph problems We propose | @ BIe is independent from the connectivity of vertices of the graph, so that edges can be rapidly Medusa for the PageRank algorithm, which does not mutate graph topology. Similarly,

processing framework capable ot efficient aad eletion of edge: added and deleted without reconstruction of message buffer. the Bellman-Ford algorithm never requires topology mutation. However, we
ceded for topology mutatic We compare our framework W|th an eX|st|ng vy Uz U3

unexpectedly found that our framework achieved the best speedup of 1.3x. This

List-based data structure for message passing Re,;j;]\c/eerrs -: higher performance came from our list-based data structure, which allocates memory
region only for actually sent messages. In contrast, an array-based data structure

framework namely Medusa to understand the impact of our dynamic data
structure in several graph algorithms.
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graphs that can change their connectivity at run time. at every superstep
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when retrieving messages

» Buffer reconstruction is needed when adding/deleting a vertex to/from the » We use a tree-based parallel insertion scheme to realize fast message passing with a less
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