
Towards Realizing Topology Mutation for Iterative Graph Processing on a GPU

Abstract

Pregel-like iterative graph processing [2]
 Superstep-based parallel processing

 A superstep consists of local computation, 
communication and barrier synchronization

 Description needed for supersteps
 Which vertices exchange messages?
 How per-vertex and per-edge values

should be updated?

A snapshot of Bellman-Ford algorithm
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Topology mutation
 Useful to realize pointer jumping employed in many parallel graph 

algorithms
 Pointer jumping follows all paths simultaneously and shares 

results among dependent operations
 ex. Minimum spanning tree problem
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 Each vertex has a fix-sized array to receive messages
 Each array element is dedicated to an incoming edge
 Array elements are sorted by vertex ID to realize memory coalescing

when retrieving messages
 Buffer reconstruction is needed when adding/deleting a vertex to/from the 

graph
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Proposed Method

List-based data structure for message passing
 Each vertex has a variable-sized list to receive messages
 The sender adds its messages to the receiver's list

Challenging issues to implement list structure on
a highly-threaded GPU

 Realizing fast, dynamic memory 
allocation/deallocation
 Thousands of threads can send messages 

at every superstep
 Realizing exclusive but rapid access to the list
 Thousands of threads can access the 

same list simultaneously
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Experimental Results

Dynamic memory allocation
 We extend a memory allocator designed for MapCG [4]
 A pointer is used to indicate the boundary of

used/unused region
 O(w) time for allocation of memory region,

where w is the number of warps
 O(1) time for deallocation of all of the

allocated memory region
 Restriction: partial deallocation not available

Global memory

Pointer

Thread

malloc malloc mallocmalloc malloc

Exclusive access to the list
 We use a tree-based parallel insertion scheme to realize fast message passing with a less 

number of conflicts
 A half of threads follows the next pointer at every trial

 Messages can be added in O(log m) time in average, where m represents the number of 
messages to be sent to the same vertex
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Barrier synchronization

Superstep

5

1

Setup

 Borůvka algorithm [4] with topology mutation
 The minimum spanning tree problem
 A few vertex has many incoming messages

 Bellman-Ford algorithm without topology mutation
 The single-source shortest path problem
 A few vertex transmits messages to others

 PageRank algorithm without topology mutation
 The website ranking problem
 All vertices exchange messages

CPU Intel Core i7-4770K CPU @ 3.50GHz
GPU GeForce GTX 780
OS Ubuntu 12.04.3 LTS
CUDA 5.5

Dataset |V| (106) |E| (106) Max degree Avg degree Variance

RoadNet-CA 2.0 5.5 12 2.8 1.0

R-MAT 1.0 16.0 1,742 16 32.9

Random 1.0 16.0 28 16 4.0

WikiTalk 2.4 5.0 100,022 2.1 99.9

Performance evaluation
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 Double buffering technique
achieves 1.5x speedup at best

 Tree-based insertion achieves
3x speedup at best, but
decreases performance if
messages do not gather at a
specific vertex

Comparison with Medusa
 For Borůvka algorithm, our

method was 3x faster because it
avoids buffer reconstruction

 For PageRank algorithm, our
method was 10-50% slower
because many vertices send
messages at every superstep

 For Bellman-Ford algorithm, our
performance varies according to
communication pattern
 1.3x faster at best
 50% slower at worst

Borůvka algorithm

Bellman-Ford algorithm

PageRank algorithm
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Existing iterative graph processing frameworks [1] have demonstrated that
large-scale graph processing can be successfully accelerated using GPUs;
however, the previous approach assumes that the graph is given as a fixed
data. This static data structure facilitates maximizing the execution efficiency
on the GPU: the graph can be effectively stored in global memory such that
vertices in the graph can receive messages with memory coalescing. However,
such a data structure heavily relies on the connectivity of vertices of the
graph. Thus, a more flexible data structure is needed to deal with dynamic
graphs that can change their connectivity at run time.

We present and discuss how a dynamic graph can be processed efficiently on
a GPU. In particular, irregular dynamic data structure is required to realize
topology mutation, which is a fundamental operation for solving some
important classes of graph problems. We propose an iterative graph
processing framework capable of efficient addition and deletion of edges
needed for topology mutation. We compare our framework with an existing
framework, namely Medusa, to understand the impact of our dynamic data
structure in several graph algorithms.

Motivation

Medusa [1]

Topology mutation

Buffer reconstruction

Contrary to the previous approach, which employs array-based data structure, our
framework allows vertices to have own list for receiving messages. By using this list-based
data structure, a message can be sent by insertion into the receiver's list. Our data structure
is independent from the connectivity of vertices of the graph, so that edges can be rapidly
added and deleted without reconstruction of message buffer.

No reconstruction needed when adding/deleting a vertex

We compared our framework with Medusa, a GPU-accelerated framework that uses a
static data structure for fixed graphs. For the Borůvka algorithm, our framework was
three times faster than Medusa. In contrast, our framework was 50-90% slower than
Medusa for the PageRank algorithm, which does not mutate graph topology. Similarly,
the Bellman-Ford algorithm never requires topology mutation. However, we
unexpectedly found that our framework achieved the best speedup of 1.3x. This
higher performance came from our list-based data structure, which allocates memory
region only for actually sent messages. In contrast, an array-based data structure
allocates memory region for incoming edges (i.e., possible messages), and thus, the
memory bandwidth was wasted due to this unfilled buffer.

 Considering this restriction, we integrate this allocator into a double buffering technique
 Two allocators are alternatively used at every superstep to avoid duplication of 

incoming messages
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Serial operations
needed to
follow paths

Every vertex points to
its root node
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