CATEGORY: DEVELOPER - ALGORITHMS - DA10

GP TECHNOLOGY
CONFERENCE

Towards Realizing Topology Mutation for Iterative Graph Processing on a GPU

Yasuakl Mitani, Fumihiko Ino and Kenichi Hagihara

Graduate School of Information Science and Technology, Osaka University

m-yasuak@ist.osaka—u.acjp

Proposed Method Experimental Results

We present and discuss how a dynamlc graph can be processed efficiently on Contrary to the previous approach, which employs array-based data structure, our We compared our framework with Medusa, a GPU-accelerated framework that uses a

a GPU. In particular, irregular dynamic data structure is required to realize framework allows vertices to have own list for receiving messages. By using this list-based static data structure for fixed graphs. For the Boruvka algorithm, our framework was

topology mutation, which is a fundamental operation for 50|V'n8 some data structure, a message can be sent by insertion into the receiver's list. Our data structure three times faster than Medusa. In contrast, our framework was 50-90% slower than

|mportant classes of graph problems We propose | @ BIe is independent from the connectivity of vertices of the graph, so that edges can be rapidly Medusa for the PageRank algorithm, which does not mutate graph topology. Similarly,

processing framework capable ot efficient aad eletion of edge: added and deleted without reconstruction of message buffer. the Bellman-Ford algorithm never requires topology mutation. However, we
ceded for topology mutatic We compare our framework W|th an eX|st|ng vy Uz U3

unexpectedly found that our framework achieved the best speedup of 1.3x. This

List-based data structure for message passing Re,;j;]\c/eerrs -: higher performance came from our list-based data structure, which allocates memory
region only for actually sent messages. In contrast, an array-based data structure

framework namely Medusa to understand the impact of our dynamic data
structure in several graph algorithms.

> Each vertex has a variable-sized list to receive messages allocates memory region for incoming edges (i.e., possible messages), and thus, the
|:> 7) reco needed he ~ddinc /deleoti , a a . ’ SEtUE
. : : : Receiver’s
Existing iterative graph processing frameworks [1] have demonstrated that buffer ntel Core i7-4770K CPU @ 3.50GHz

large-scale graph processing can be successfully accelerated using GPUs; Challenging issues to implement list structure on mGeForce GTX 780 RoadNet-CA

however, the previous approach assumes that the graph is given as a fixed . EER Ubuntu 12.04.3 LTS R-MAT 1.0 16.0 1,742 16 32.9
data. This static data structure facilitates maximizing the execution efficiency d hlghly'threadEd GPU cupa X Random 1.0 16.0 28 16 4.0

on the GPU: the graph can be effectively stored in global memory such that \/\/\ma”oc 1 2] WikiTalk 24 >0 100,022 2 -
vertices in the graph can receive messages with memory coalescing. However, » Realizing fast, dynamic memory I \/\/\ malloc » Boruavka algorithm [4] with topology mutation

such a data structure heavily relies on the connectivity of vertices of the allocation/deallocation 9 \/\/\malloc » The minimum spanning tree problem (1] @ j> Co—)
graph. Thus, a more flexible data structure is needed to deal with dynamic » Thousands of threads can send messages \/\/\malloc » A few vertex has many incoming messages

graphs that can change their connectivity at run time. at every superstep

» Bellman-Ford algorithm without topology mutation

Thread

» Realizing exclusive but rapid access to the list

» Thousands of threads can access the Add /'\/\/,¢
same list simultaneously

» The single-source shortest path problem

Pregel-like iterative graph processing [2]

ol

% » A few vertex transmits messages to others 0

» Superstep-based parallel processing » PageRank algorithm without topology mutation

» A superstep consists of local computation, Barrier synchronization Dynamic memory allocation » The website ranking problem 9@
communication and barrier synchronization 0 0 o > All vertices exchange messages 0 PY @
» Description needed for supersteps ZJ » We extend a memory allocator designed for MapCG [4] . 9 e
— e o Performance evaluation
» Which vertices exchange messages? Q B F‘G e » A pointer is used to indicate the boundary of 15 Bordvka algorithm
{ 3 : I I I I I onose
» How per-vertex and per-edge values j used/unused region - :a e Cce & » Double buffering technique = .E p : / single buff
should be updated? Q @ @ » O(w) time for allocation of memory region, - %% %%% ? achieves 1.5x speedup at best £ 10 Proposed W/Sm,ge_] ir
. + roposed w/ naive insertion
I . Superstep #1 #2 | #3 where w is the number of wa r'ps Global memory \‘ > Tree-based insertion achieves _§ i Medusa (reconstruction)
Topology mutation A snapshot of Bellman-Ford algorithm > 0(1) time for deallocation of all of the Pointer 3x speedup at best, but ¢ I B
> Useful to realize pointer jumping employed in many parallel graph allocated memory reglon decreases performance if 0 a - ms
algorithms > Restriction: ial deallocation not available messages do not gather at a RoadNet-CA R-MAT Random WikiTalk
: : : : specific vertex
» Pointer jumping follows all paths simultaneously and shares » Considering this restriction, we integrate this allocator into a double buffering technique P . . 20 PageRank algorithm
It dependent ti | Comparison with Medusa R Proposed
results among depehdent operations » Two allocators are alternatively used at every superstep to avoid duplication of @, WProposed w/single buffer
- Mini ' : : . . v Proposed w/ naive insertion
» ex. Minimum spanning tree problem incoming messages > For Borlvka algorithm, our = Mezusa)
Deallocatior method was 3x faster because it S 0
Serial operations Mlocator #1 g ‘(f ‘(r [f avoids buffer reconstruction $ 5
ocator | "
needed to > > send (write) | : send (write) | > For PageRank algorithm, our 0 mm L B i I
follow paths E | o a method was 10-50% slower RoadNet-CA R-MAT Random WikiTalk rev-WikiTalk
it\;errgo\’zenr;zlxe points to end (write) e (re; because many vertices send . Sellman-Ford alorith
d 1 Allocator #2 \L \i \L messages at every superstep _ m Proposed eliman-Ford algorithm
Medusa [1] » For Bellman-Ford algorithm, our g 1 Pmposedszmg'emffer
. . e Proposed w/ naive insertion
> Each vertex has a fix-sized array to receive messages Superstep #1 Superstep #2 Superstep #3 performence varies according to S Medusa
, , , , communication pattern 3 0.5
» Each array element is dedicated to an incoming edge Q -
> A | . rod b cox ID ¢ y Exclusi to the list » 1.3x faster at best - i} B _
rray elements are sorted by vertex ID to realize memory coalescing xclusive access to the lis 0 — — — — —
> 50% slower at worst RoadNet-CA R-MAT Random WikiTalk rev-WikiTalk

when retrieving messages

» Buffer reconstruction is needed when adding/deleting a vertex to/from the » We use a tree-based parallel insertion scheme to realize fast message passing with a less
graph number of conflicts References

> A half Of threads fO”OWS the next pOIﬂter at every trlal [1] Jianlong Zhong and Bingsheng He, “Medusa: Simplfied graph processing on GPUs,” IEEE Trans. Parallel and Distributed System, 25(6):1543-1556,

. . . June 2014.
> Messages Can be addEd In O(log m) time in average’ Where m represents the number Of [2] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, llan Horn, Naty Leiser and Grzegorz Czajkowski, “Pregel: A System for

messages to be sent to the same vertex Large-Scale Graph Processing,” Proc. SIGMOD'10, pp.135-145, June 2010.
[3] Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng, Haibo Lin, “MapCG: Writing parallel program portable between CPU and GPU,” Proc.

PACT '10, pp.217-226, Sept. 2010.

3 Ld I-SJ LESJ I—d LE%J L 9J llﬂ Ld I-SJ I'Ej I—d |78J 9 Llﬂ ‘ 4 \ LGJ I-d |-9J I_lﬂ [4] Semih Salihoglu and Jennifer Widom, “Optimizing Graph Algorithms on Pregel-like Systems,” Proc. VLDB’14, pp.577-588, Sept. 2014.

. —
v, Buffer reconstruction v 1 i 2 |] J 3 J 2 1l s el s e g e 2 | [

Receiver’s 5 | Receiver’s
buffer ; buffer

€12 €13 €23

e 3 Topology mutation

(%1 Tez,s
2@
v

2

This study was partly supported by the JST CREST program “An Evolutionary Approach to }

15t trial 2nd trial 3rd trial Construction of a Software Development Environment for Massively-Parallel Computing Systems.”

