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Background Parallelization Results

e This study presents a parallel moving mesh correspondence algorithm for the RV e Performance comparison for different implementations of the algorithm to process
segmentation using GPU computing Image Registration - Sequential Order a sequence of 20 MR images.

e Automatic delineation of the RV is difficult because of its complex morphology,
thin and ill-defined borders, and the photometric similarities between the con-
nected cardiac regions such as papillary muscles and heart wall

Performance

Implementation Moving mesh computation

e One solution to the problem is to use a non-rigid registration method to obtain

the point correspondence in a sequence of cine MR images [1] GPU — concatenated image 4.36 £ 1.22 seconds

GPU — sequential image 14.45 £ 0.51 seconds
CPU (python)“ 3991.70 + 1456.78 seconds

e However, non-rigid registration algorithms involve optimization of similarity func-
tions, and are therefore, computationally expensive

“Evaluated only over one subject in the forward direction due to very large runtime, which amounts to approx-

elna previ,ous StUdl:J! we |JI"0|3OS€'C| GPU CO'“lleti—ng to accelerate the algorithm imately half of the computation time for the forward-backward registration.

e In this study, we further parallelize the problem by image concatenation
e The proposed method yielded an additional acceleration of more than 3x of the

e We also extend the method by computing point correspondence in forward and
sequential image CUDA version

backward directions and taking the weighted average to improve the accuract : : : . : :
R Ny : J 9 P ] e The process requires running the registration algorithm K—1 times for forward

and backward directions. Performance

e Number of pixels vs runtime for image sequential and concatenated image
Parallelization - Image Concatenation implementations

Method

e The proposed approach uses a diffeomorphic nonrigid registration algorithm to - . ! 1. .
. : . : T <<Ts SRS <o e sequential image (gpu) e concatenate image (gpu) :
find point correspondence between two images in a cardiac sequence : ; ;
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_ | e [he process requires running the registration algorithm only once for forward
Convert parameters % Compute gradients ‘ and backward directions.

(from m & g to wrt. m&g

DT optimization | | e Concatenation was performed on the GPU to reduce memory transfer.
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Implementation

Forward-Backward Registration

e The algorithms were implemented using the Python Programming Language

‘ Anatomical Cine MR [

e The GPU CUDA version was implemented using Numbapro (Continuum Analytics,
Austin, TX)

e The following Numbapro CUDA submodules were used: cufft and cublas

Frame k Frame k (or k + K)
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e Weighted average of the displacement matrix at frame k
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DMﬁ 1= (1 —w)x DM}Z 1+ wx DM;’?1 w = k/K e The proposed method was evaluated over the Training data set provided by the
| | | MICCAI 2012 RV segmentation challenge (http://www.litislab.eu/rvsc/)

e The data set consists of short-axis MRI volumes of 16 subjects
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K — total number of frames in the sequence

e The data was acquired on 1.5T MR scanners



