
Training Random Forests on the GPU: Tree Unrolling
Mark Seligman

Suiji

1

Introduction

The Random Forest algorithm is a popular tool for predictive analytics.
The algorithm is both stable and robust, and plays the role of a Swiss
Army Knife for data mining and machine learning.

The Arborist

The Arborist is an open-source implementation of the Random Forest
algorithm designed for scability and extensibility.
A common code base allows spins of the Arborist to be created for
multiple front ends, such as R and Python as well as various hardware
targets, such as multicore and GPU.

The algorithm, in a nutshell

A “forest” of decision trees is built, each tree predicting an expected
outcome (response) for a set of observations. Regression outcomes are
averaged; categorical are voted on.
A tree is built by sampling the response and performing successive bi-
partitions: nodes can be identified with sets of row indices. The process
terminates when partitioning exhausts. Two argmax criteria determine
the bipartition:
• Where, among the sample indices, does a given predictor maximize

information content?
• Which predictor holds the overall maximum?

Information content is evaluated at each index in the sample set, walking
in predictor order.
The “winning” predictor determines a predicate, mapping indices to the
left or right subnode.

2 forest types x 2 predictor types = 4 cases

Forests are regression or categorical. Both types support numerical,
factor and mixed predictors.
Predictor argmax depends on both, so presents four distinct cases:

Predictor
Response Numerical Factor
Regression Index walk Index walk

Block sort
Block walk

Categorical Index walk Index walk
Subset walk

The four types of index walk are similar, but not identical. Each main-
tains distinct state, and factors maintain runs as blocks.

Restaging: data locality

Efficient bookkeeping dictates maintaining separate index sets for each
predictor at each bipartition.
In restaging, sample indices are dispatched to either of two subsets,
according to the value of a predicate, while preserving order.
Data locality improves with bipartitioning, as index ranges progressively
shrink.
Restaging is independent of both forest and predictor type: a single
implementation suffices.

Restaging: concurrency

Restaging is an example of a stable partition, which the GPU can
parallelize using scan.
This occurs for each predictor and node at the current level, offering
further opportunities for parallel execution.

T

F

.
.

.

.

..

18

18

7

7

43

43

2

2

29

29

17

17

3

3

11

11

Concurrency: argmax and interlevel

The predictor argmax operations are embarassingly parallel.
Following a transposition, low memory footprint supports high thread-
count at one predictor per thread.
A sequential interlevel pass applies the argmax values to define each
bipartition.
Left/right index subsets are conveyed to the next level. Although se-
quential, this step profits from data already residing on the GPU.

Factors and thread divergence

Blocks of runs are walked either in order or by subset: O(n) vs. O(2n).
Factors incur blocks of varying length, leading to thread divergence and
requiring algorithmic intervention.
Mixed predictors incur widely divergent index walks. Only the special
case of purely numerical data appears immune.

Wide genomic data

We introduced these concepts at GTC 2014, as well as an initial imple-
mentation.
A wide genomic data set was presented, featuring ∼ 106 SNPs from one
hundred HIV patients. Factor cardinality was limited to 3, constraining
thread divergence.
The implementation coupled the argmax and restaging phases and
yielded minimal acceleration.
The next panel highlights a more recent version, which features scan-
based restaging.

50 x : the case for more predictors

Execution-time ratios between tuned multicore and GPU implementa-
tions:

�

�

�

�
�

�

�

0 20000 40000 60000 80000 100000 120000

15
20

25
30

35
40

45
50

Predictor count

Ex
ec

tu
io

n
tim

e
ra

tio
:

C
PU

/G
PU

With addtional predictors the advantage of the GPU rapidly approaches
50x for this wide example.

Tall data: parallelizing across trees

Tall data is the more typical use case, often with 102 − 103 predictors.
Kernels can treat multiple trees to extract more predictor-level paral-
lelism. This is reasonable, as forests usually contain 500 − 1000 trees.

Implementation

Initial staging data is sent to the GPU for multiple trees, unrolling by
a factor suitable for the GPU’s memory constraints.
Both argmax and restaging continue to operate on a per-predictor basis,
but with increased parallelism offered by unrolling.
The sequential interlevel pass continues to take place on the GPU, but
now reconciles an entire block of tree levels, with workload growing by
a similar factor.
This approach introduces some thread divergence toward completion,
as tree construction does not terminate uniformly.

Conclusions

Optimal training of a Random Forest varies with the data. For example,
a purely numerical/regression implementation can perform argmax and
restaging together as a single pass.
But we seek a general framework to treat all four cases. For this broader
goal, the ability to expose more predictors is quite helpful.

Future work

• Continue to pare thread divergence.
• Extend to off-GPU and off-memory sizes.
• Multi-GPU and multi-node implementations.
• General dispatch mapping to appropriate implementation.

contact Name

Mark Seligman: mseligman@suiji.org
Poster

P5282

Category: Machine Learning & Deep Learning - ML03

