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Bi-Graph abstraction 

Parallelization

Conv

Weight

Bottom

Conv w.r.t bottom

ΔBottom

Conv w.r.t weight

ΔWeight

Add bias

Bias ΔBias

Bias gradient

Top ΔTop

Bottom

Top

Convolution 
Layer

ΔTop

ΔBottom

(a) Caffe Convolution Layer (b) Bipartite Graph

Comparison of Caffe layers and their bigraph 
representations.

Example Network converted to Bi-graph representation.
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Optimization

type:	  blob	  
name:	  weight	  
size:	  [96,	  3,	  11,	  11]	  
location:	  
	  	  ip:	  127.0.0.1	  
	  	  device:	  0	  

type:	  op	  
op_type:	  Conv	  
name:	  conv1	  
inputs:	  [	  bottom,	  weight	  ]	  
outputs:	  [	  top	  ]	  
location:	  
	  	  ip:	  127.0.0.1	  
	  	  device:	  0	  
thread:	  1	  
other	  fields	  ...	  

Example Op defined in YAML 

Location: 
The location that the blob/op resides on, 
including: 
●   ip address of the target machine 
●  what device it is on (CPU/GPU) 

 
Thread: 
Thread is needed for op because both 
CPU and GPU can be multiple threaded 
(Streams in terms of NVIDIA GPU). 

1. Start from sources and end at sinks of the graph.
2. Prune unnecessary nodes.

The name
1. We benefited from the open source 
deep learning framework Caffe. 
2. The math functions and core com-
putations are adapted from Caffe.
3. Similar molecular structure. 

Advantages of Bi-Graph Abstraction
1. Less hard coding and more reusability.
2. All concepts are consistently expressed with graph.
    (SGD solver, Forward & backward pass, etc.)
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SGD SOLVER
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3. Flexible to implement various schemes of parallelization.

PIPELINING
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DATA PARALELLISM

Inner Product Layer

Softmax Layer

Softmax
Softmax Diff

Loss

Label

Location B Inner Product Layer

Softmax Layer

Softmax
Softmax Diff

Loss

Label

Location A

Average

Parameter Server

... ... 

... ... 

... ... 

Gradient exchange

Green arrows can overlap in time

Forward Backward

Weights

Gradients1. Asynchronous update hides communication latency.
2. Synchronous (all reduce) is possible by overlapping 
data transfer with computation.

Higher layer gradients are computed 
earlier than lower layers.

Higher layer can send gradients to 
parameter server and get them back 
while the lower layers are doing their 
computation.

Especially true for very deep networks

Parameter update 
of lowest layer 

Data transfer overlaps with computation 

0 
100 
200 
300 
400 
500 
600 
700 
800 

GPUs    1        2        3         4        8      
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Note that 8 GPUs are on different 
machines. 
 
8 GPUs train GoogleNet in 40 hours. 
Top5 error rate 12.67% (tuning) 

Profiling result with nvprofiler.

Acceleration ratio with different number 
of GPUs.

Linear acceleration with 1 to 4 GPUs on 
the same machine. Approximate linear ac-
celeration with 8 GPUs on two machines 
interconnected with 1 gigabit ethernet.
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