
Purine: a bi-graph based deep learning framework
1 Graduate School for Integrative Sciences and Engineering
2 Department of Electronic & Computer Engineering

Min Lin1, 2, Shuo Li2, Xuan Luo2, Shuicheng Yan2

Bi-Graph abstraction

Parallelization

Conv

Weight

Bottom

Conv w.r.t bottom

ΔBottom

Conv w.r.t weight

ΔWeight

Add bias

Bias ΔBias

Bias gradient

Top ΔTop

Bottom

Top

Convolution
Layer

ΔTop

ΔBottom

(a) Caffe Convolution Layer (b) Bipartite Graph

Comparison of Caffe layers and their bigraph
representations.

Example Network converted to Bi-graph representation.

Convolution
Layer

Inner Product
Layer

Softmax Loss Layer

Inner Product Layer

Convolution Layer

Softmax Layer

Softmax
Softmax Diff

Loss

Label

Optimization

type:	 blob	
name:	 weight	
size:	 [96,	 3,	 11,	 11]	
location:	
	 	 ip:	 127.0.0.1	
	 	 device:	 0	

type:	 op	
op_type:	 Conv	
name:	 conv1	
inputs:	 [bottom,	 weight]	
outputs:	 [top]	
location:	
	 	 ip:	 127.0.0.1	
	 	 device:	 0	
thread:	 1	
other	 fields	 ...	

Example Op defined in YAML

Location:
The location that the blob/op resides on,
including:
●  ip address of the target machine
●  what device it is on (CPU/GPU)

Thread:
Thread is needed for op because both
CPU and GPU can be multiple threaded
(Streams in terms of NVIDIA GPU).

1. Start from sources and end at sinks of the graph.
2. Prune unnecessary nodes.

The name
1. We benefited from the open source
deep learning framework Caffe.
2. The math functions and core com-
putations are adapted from Caffe.
3. Similar molecular structure.

Advantages of Bi-Graph Abstraction
1. Less hard coding and more reusability.
2. All concepts are consistently expressed with graph.
 (SGD solver, Forward & backward pass, etc.)

Bernoulli Generator

Multiplication

Mask
Bottom

Top

DROPOUT CONVOLUTION

Conv

Weight

Bottom

Conv w.r.t bottom

ΔBottom

Conv w.r.t weight

ΔWeight

Add bias

Bias ΔBias

Bias gradient

Top ΔTopΔTop

ΔBottom

SGD SOLVER

Weight Diff WeightPrevious Update

New Update

learning rate
momentum

decay

1.0

- 1.0

Weighted Sum

Weighted Sum

New Weight

3. Flexible to implement various schemes of parallelization.

PIPELINING

Inner Product Layer

Softmax Layer

Softmax

Softmax Diff

Loss

Label

Copy Op

Copied Blob
on another location

Device 2

Device 1

A C

B

A1 A2 A3 A1 A2 A3
B1 B2 B3 B1 B2 B3

C1 C2 C3 C1 C2 C3

Iterations

(a)

(b)

Inner Product Layer

Softmax Layer

Softmax

Softmax Diff

Loss

Label

Copy Op

Copied Blob
on another location

Device 2

Device 1

A C

B

A1 A2 A3 A1 A2 A3
B1 B2 B3 B1 B2 B3

C1 C2 C3 C1 C2 C3

Iterations

(a)

(b)

Inner Product Layer

Softmax Layer

Softmax

Softmax Diff

Loss

Label

Copy Op

Copied Blob
on another location

Device 2

Device 1

A C

B

A1 A2 A3 A1 A2 A3
B1 B2 B3 B1 B2 B3

C1 C2 C3 C1 C2 C3

Iterations

(a)

(b)

Inner Product Layer

Softmax Layer

Softmax

Softmax Diff

Loss

Label

Copy Op

Copied Blob
on another location

Device 2

Device 1

A C

B

A1 A2 A3 A1 A2 A3
B1 B2 B3 B1 B2 B3

C1 C2 C3 C1 C2 C3

Iterations

(a)

(b)

replicate

 1 2 3

Inner Product Layer

Softmax Layer

Softmax

Softmax Diff

Loss

Label

Copy Op

Copied Blob
on another location

Device 2

Device 1

A C

B

A1 A2 A3 A1 A2 A3
B1 B2 B3 B1 B2 B3

C1 C2 C3 C1 C2 C3

Iterations

(a)

(b)

DATA PARALELLISM

Inner Product Layer

Softmax Layer

Softmax
Softmax Diff

Loss

Label

Location B Inner Product Layer

Softmax Layer

Softmax
Softmax Diff

Loss

Label

Location A

Average

Parameter Server

... ...

... ...

... ...

Gradient exchange

Green arrows can overlap in time

Forward Backward

Weights

Gradients1. Asynchronous update hides communication latency.
2. Synchronous (all reduce) is possible by overlapping
data transfer with computation.

Higher layer gradients are computed
earlier than lower layers.

Higher layer can send gradients to
parameter server and get them back
while the lower layers are doing their
computation.

Especially true for very deep networks

Parameter update
of lowest layer

Data transfer overlaps with computation

0
100
200
300
400
500
600
700
800

GPUs 1 2 3 4 8

Images per second

Note that 8 GPUs are on different
machines.

8 GPUs train GoogleNet in 40 hours.
Top5 error rate 12.67% (tuning)

Profiling result with nvprofiler.

Acceleration ratio with different number
of GPUs.

Linear acceleration with 1 to 4 GPUs on
the same machine. Approximate linear ac-
celeration with 8 GPUs on two machines
interconnected with 1 gigabit ethernet.

contact name

Min Lin: mavenlin@gmail.com
Poster

P5285

category: Machine Learning & DeeP Learning - ML04

