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1. Less hard coding and more reusability.

1. We benefited from the open source 3. Flexible to implement various schemes of parallelization.

deep learning framework Caffe. 2y 2. All concepts are consistently expressed with graph. - .
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3. Similar molecular structure. e what device it is on (CPU/GPU)

Example Op defined in YAML

type: op
op_type: Conv
name: convl
inputs: [ bottom, weight ]
1.0 outputs: [ top ]
location:
ip: 127.0.0.1
device: ©

caffeine purine Weighted Sum

Thread 1s needed for op because both
CPU and GPU can be multiple threaded

(Streams 1n terms of NVIDIA GPU).
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1. Asynchronous update hides communication latency.
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Linear acceleration with 1 to 4 GPUs on
the same machine. Approximate linear ac-

while the lower layers are doing their

1. Start from sources and end at sinks of the graph.
2. Prune unnecessary nodes.

computation.

celeration with 8 GPUs on two machines

interconnected with 1 gigabit ethernet.

Especially true for very deep networks




