
These operations are supported by cuBlas
and cuSparse libraries. However, they are not
suitable for us because of the following
reasons:

• they use different from FlowVision ways to
store matrices
• have a poor support of running a large
number of small tasks
• don’t have optimizations for small dense
matrix sub-blocks

1. Introduction
 AMG (Algebraic MultiGrid) algorithms can
be applied to a wide range of applications:
• hydrodynamics
• mechanics
• electromagnetism
To solve problems of hydrodynamics there is
software package FlowVision - an integrated
multi-purpose solution for three-
dimensional modeling of flows created by
the development team from the Russian
company Tesis. FlowVision is based on the
numerical solution of three-dimensional
steady and unsteady equations of fluid
dynamics and gas.
 However FlowVision supports the
calculation only on high-performance
multicore CPU clusters. The main idea of this
work - to develop a computational kernels,
which allow efficient GPU using

Accelerating industrial applications:
The development of basic GPU kernels for the new block AMG algorithms

for solving SLE with explicitly calculated sparse basis Afanasyev Ilya1, Potapov Yury 1, Sergey Kharchenko 2
Lomonosov Moscow State University 1, Tesis 2

• GPU: NVIDIA Tesla K20c, Tesla K40, GEFORCE
TITAN
• CPU: Intel Xeon E5620, Intel Dual Core
• OS: Ubuntu version 12.04
• CUDA: Version 6.5
• Compiler: nvcc 6.5 & gcc 4.8 with –O2

Conclusions

2. The goal of our work
 To transfer part of computational functions
of package FlowVision to GPU it is necessary
to implement CUDA kernels of the following
basic linear algebra operations:
• DAXPY
• dot product
• multiplication of a sparse block matrix and
transpose to it on a block of dense vectors
• complete(or not) LU factorization of a
sparse block matrix
• solution of block system with finely upper
and lower triangular sparse matrix

The most important is to implement
simultaneous and uniform usage of CPU and
GPU resources.

It is also important to mention that the main
direction of optimizations is small tasks,
because current kernels are aimed at solving
subproblems with maximum size of
vectors/matrices approximately 50 000 – 100
000 float elements(however whole problem
can be very huge).

4. Why not cuBLAS/cuSPARSE?

 Block operation DAXPY is a straightforward block generalization of
dot operation AXPY (Level 1 BLAS from Lapack):
Y + = X * A, where X, Y are rectangular matrixes M × N2 and M × N1
size, and A is small block size N1 × N2, where M >> {N1, N2}, N1 and
N2 have one of the fixed sizes {1, 2, 4, 8, 16}

DAXPY

0
2
4
6
8

10
12
14
16
18

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

block 4x4 block 16x16

0
50

100
150
200
250
300
350
400
450
500

block 4x4 block 16x16

Performance (Gflops) of 1 task,
depending from vector length

Performance (Gflops) of 28 tasks,
depending from vector length

0
50

100
150
200
250
300
350
400

4x4 8x8 16x16

cuBlas sgemm daxpy kernel

Dot product

The performance comparison of daxpy
kernel and cuBlas sgemm

The runtime comparison of daxpy kernel and
cuBlas sgemm for different vector sizes

0
50

100
150
200
250
300

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

10
48

57
6

20
97

15
2

daxpy kernel cuBlas

0

50

100

150

200

250

20
00

0

40
00

0

60
00

0

80
00

0

10
00

00

12
00

00
14

00
00

16
00

00

18
00

00

20
00

00

DOT SGEMM

0

50

100

150

200

250

4x4 8x8 16x16

SGEMM DOT

Performance (Gflops) of 28 tasks,
depending from vector length

Performance (Gflops) of 28 tasks.
M = 200 000

 In both operations (dot and DAXPY) dense blocks are
stored by rows to enable data locality.
Similar a BLAS DOT, Block DOT operation calculates scalar
product. But instead of two vectors as an input , it receives
two blocks of vectors and return as output one block of
scalar products.
 C = AT * B.
A and B are matrices with sizes M x NA and M x NB.
M >> {NA, NB},
NA and NB have one of the fixed sizes {1, 2, 4, 8, 16}
Same result can be obtained by using a GEMM function
from cuBLAS.

 In order to simultaneously use the computing resources of
the CPU and GPU the following programming mode is used:

 Each MPI process (corresponding to
supercomputer's node) launches the group of
threads, where synchronization is performed
by Intel TBB.
Computational work within each thread may
perform any CPU core or multiprocessor GPU.

In this context, in order to maximize performance and parallelism we must
use GPU’s architecture Kepler, allowing to run up to 32 concurrent kernels.

The profiling of daxpy kernel: all tasks are
working in parallel

The dependence of daxpy and dot kernel’s
runtime from the number of parallel tasks

0

5

10

15

20

25

1 4 8 12 15 18 22 26

float
double

3. The main ideas of our work

 Thus on the GPU are launched
about 14-32 parallel kernels, and
each of one uses no more than
one multiprocessor.

Sparse block matrices
 Multiplication of sparse block matrix in CRS format and
transposed matrix in CSC format to a block of dense
vectors (MVM and MVMT). The block size is in {1, 2, 4,
8, 16}
The main approach is to pre-commit permutation of
matrix, so that the neighbour rows have the same
number of blocks, and such groups of rows can be
handled by independent small kernels. For transposed
matrix we permute columns to gain groups with same
amount of blocks.

0

50

100

150

200

250

300

350

float double

4x4 8x8 16x16

The performance (Gflops) comparison
for different sizes of matrix block

0
100
200
300
400
500
600
700
800

1 2 4 6 8 1012131415161820222426

float double

The dependence of mvm/mvmt
runtime from the number of parallel
tasks

5. Hardware testbed

0

50

100

150

200

250

float double
4x4 8x8 16x16

0

2

4

6

8

10

4x4 8x8 16x16
GPU CPU

The performance (Gflops)
comparison of CPU and GPU 1 task
versions

The performance (Gflops)
comparison for different sizes of
matrix block, 26 tasks

LU factorization

As a result of this
work considered
FlowVision
computational
functions have been
accelerated from 50
to 1100 times
relatively serial
one-core versions

0
200
400
600
800

1 000
1 200

GPU speedup

This material is based upon work supported by the Ministry of Education and Science of the Russian Federation (Agreement N14.607.21.0006, unique identifier RFMEFI60714X0006).

contact Name

Ilya Afanasyev: afanasiev_ilya@icloud.com
Poster

P5287

Category: Developer - Performance Optimization - DO05

