
These operations are supported by cuBlas 
and  cuSparse libraries. However, they are not 
suitable for us because of the following 
reasons: 
 
•  they use different from FlowVision ways to 
store matrices 
•  have a poor support of running a large 
number of small tasks 
•  don’t have optimizations for small dense  
matrix sub-blocks 
 

1. Introduction 
 AMG (Algebraic MultiGrid) algorithms can 
be applied to a wide range of applications: 
•  hydrodynamics 
•  mechanics 
•  electromagnetism  
To solve problems of hydrodynamics there is 
software package FlowVision - an integrated 
multi-purpose solution for three-
dimensional modeling of flows created by 
the development team from the Russian 
company Tesis. FlowVision is based on the 
numerical solution of three-dimensional 
steady and unsteady equations of fluid 
dynamics and gas. 
  However FlowVision supports the 
calculation only on high-performance 
multicore CPU clusters. The main idea of this 
work - to develop a computational kernels, 
which allow efficient  GPU using 
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• GPU: NVIDIA Tesla K20c, Tesla K40, GEFORCE 
TITAN 
• CPU: Intel Xeon E5620, Intel Dual Core  
• OS: Ubuntu version 12.04 
• CUDA: Version 6.5 
• Compiler: nvcc 6.5 & gcc 4.8 with –O2 

Conclusions 

2. The goal of our work 
 To transfer part of computational functions 
of package FlowVision to GPU it is necessary 
to implement CUDA kernels of the following 
basic linear algebra operations:  
•  DAXPY 
•  dot product 
•  multiplication of a sparse block matrix and 
transpose to it on a block of dense vectors 
•  complete(or not) LU factorization of a 
sparse block matrix 
•  solution of block system with finely upper 
and lower triangular sparse matrix 
 
The most important is to implement 
simultaneous and uniform usage of CPU and 
GPU resources. 
 
It is also important to mention that the main 
direction of optimizations is small  tasks, 
because current kernels are aimed at solving 
subproblems with maximum size of 
vectors/matrices approximately 50 000 – 100 
000 float elements(however whole problem 
can be very huge). 

4. Why not cuBLAS/cuSPARSE? 

 Block operation DAXPY is a straightforward block generalization of 
dot operation AXPY (Level 1 BLAS from Lapack): 
Y + = X * A, where X, Y are rectangular matrixes M × N2 and M × N1 
size, and A is small block size N1 × N2, where M >> {N1, N2}, N1 and 
N2 have one of the fixed sizes {1, 2, 4, 8, 16} 

DAXPY 
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The runtime comparison of daxpy kernel and 
cuBlas sgemm for different vector sizes 
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 In both operations  (dot and DAXPY) dense blocks  are 
stored by rows to enable data locality.  
Similar a BLAS DOT, Block DOT operation calculates scalar 
product. But instead of two vectors as an input ,  it receives  
two blocks of vectors and  return  as output one block of 
scalar products. 
  C  = AT * B.  
A and B are matrices  with sizes M x NA and M x NB. 
M >> {NA, NB}, 
NA and NB have one of the fixed sizes {1, 2, 4, 8, 16}  
Same result can be obtained by using a GEMM function 
from cuBLAS. 

 In order to simultaneously use the computing resources of 
the CPU and GPU the following programming mode is used: 

 Each MPI process (corresponding to 
supercomputer's node) launches the group of 
threads,  where synchronization is performed 
by  Intel TBB.  
Computational work within each thread may 
perform any CPU core or multiprocessor GPU. 

In this context, in order to maximize performance and parallelism we must 
use GPU’s architecture Kepler, allowing to run up to 32 concurrent kernels. 

The profiling of daxpy kernel: all tasks are 
working in parallel 

The dependence of  daxpy and dot kernel’s 
runtime from the number of parallel tasks 
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 Thus on the GPU are launched 
about 14-32 parallel kernels, and 
each of one uses no more than 
one multiprocessor. 

Sparse block matrices 
 Multiplication of sparse block matrix in CRS format and 
transposed  matrix in CSC format to a block of dense 
vectors (MVM and MVMT). The block size is in {1, 2, 4, 
8, 16} 
The main approach is to pre-commit permutation of 
matrix, so that the neighbour rows  have the same 
number of blocks, and such groups of rows can be 
handled by independent  small kernels. For transposed 
matrix we permute columns to gain groups with same 
amount of blocks. 
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5. Hardware testbed 
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As a result of this 
work considered 
FlowVision 
computational  
functions have been 
accelerated from 50 
to 1100 times 
relatively serial 
one-core versions 
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