

Spatial and Temporal Feature Extraction for Brain Decoding using CUDA

Itir Onal¹, Alptekin Temizel², Fatos T. Yarman Vural¹

¹Department of Computer Engineering, Middle East Technical University, TURKEY ²Graduate School of Informatics, Middle East Technical University, TURKEY

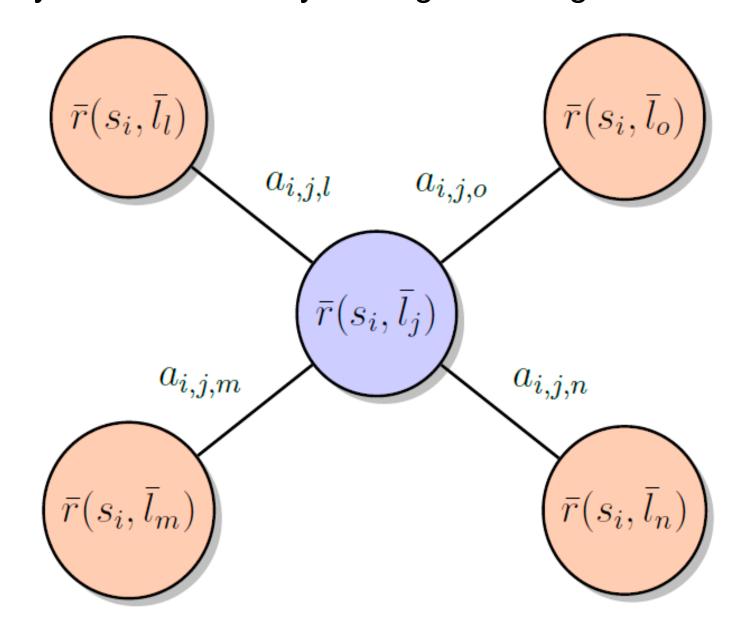


Motivation

Brain decoding is the process of predicting cognitive states from medical data (fMRI, EEG, etc.) while the subjects are presented with stimulus (piccture, audio, etc.). A typical fMRI experiment consists of thousands of voxels and hundreds of samples. Solving regression for all samples of all voxels serially requires huge amount of time.

Spatial and Temporal Features

BOLD response from a seed voxel $\overline{r}(s_i, \overline{l}_i)$ is represented as a linear combination of its nearest neighbors. Arc weights $a_{i,i,k}$ represent both spatial and temporal relationships and they are estimated by solving linear regression.



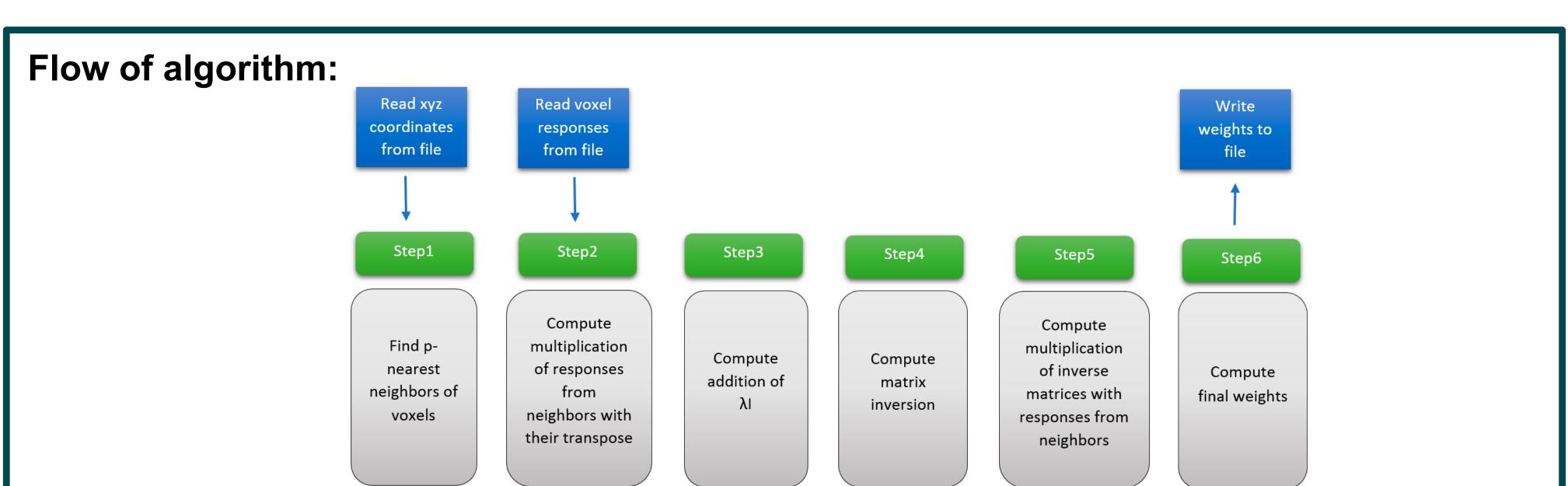
Solve the equation for all samples and all voxels:

$$\bar{r}(s_i, \bar{l}_j) = \sum_{\bar{l}_i \in r_m} a_{i,j,k} \ \bar{r}(s_i, \bar{l}_k) + \bar{\varepsilon}_{i,j}$$

Closed form solution of ridge regression:

$$\bar{a}_{i,j} = (R_{i,j}^T R_{i,j} + \lambda I)^{-1} R_{i,j}^T \bar{r}(s_i, \bar{l}_j)$$

Spatial and Temporal Feature Extraction with CUDA

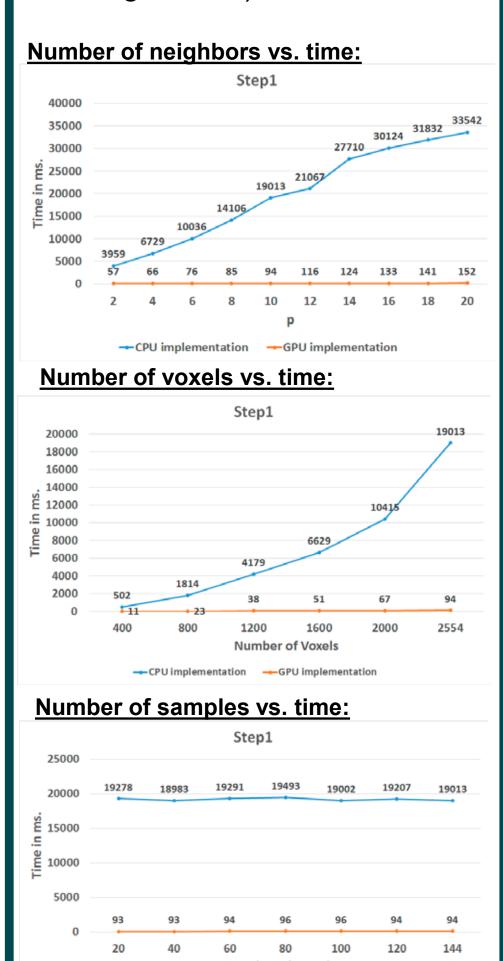


Step1

M threads are employed.

Compute MxM Euclidean distances matrix (each thread computes a single

2. Find p-nearest neighbors of all voxels (each thread finds p-nearest neighbors of single voxel)

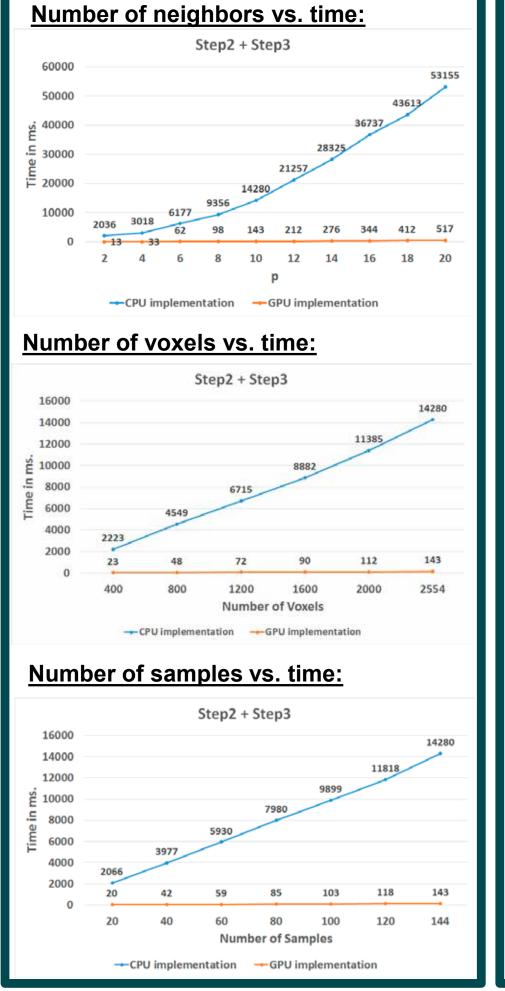


Step2 + Step3

MxNxp threads are employed

Compute $R_{i,j}^T R_{i,j}$ (each thread obtains a single neighbor data and multiplies it with $R_{i,i}$)

Compute $R_{i,j}^T R_{i,j} + \lambda I$ (each thread adds a single element to a diagonal in a



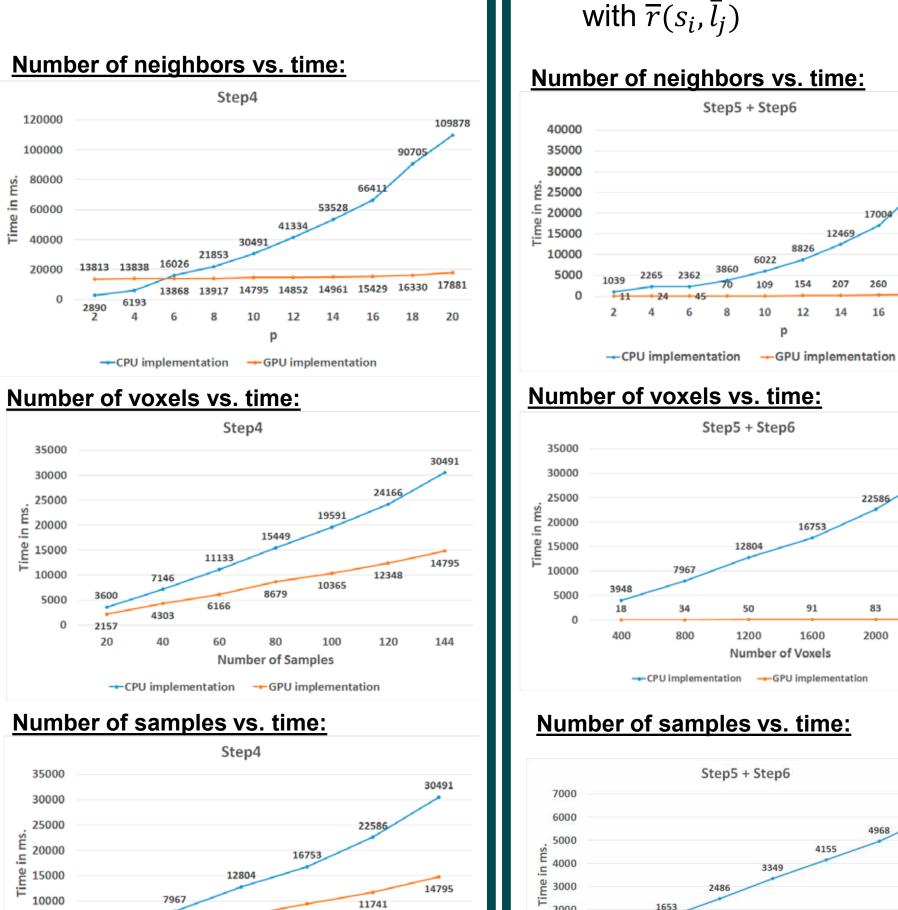
Step4

CUBLAS functions are used

Compute LU factorization of MxN many matrices using cublasSgetrfBatched

2. Compute inversion of MxNusing many matrices cublasSgetriBatched

→ CPU implementation → GPU implementation



Step5 + Step6

MxNxp threads are employed

and $R_{i,i}^T$ (each thread

multiplies a row of former

final

multiply $(R_{i,j}^T R_{i,j} + \lambda I)^{-1} R_{i,i}^T$

→CPU implementation →GPU implementation

with the matrix $R_{i,i}^T$

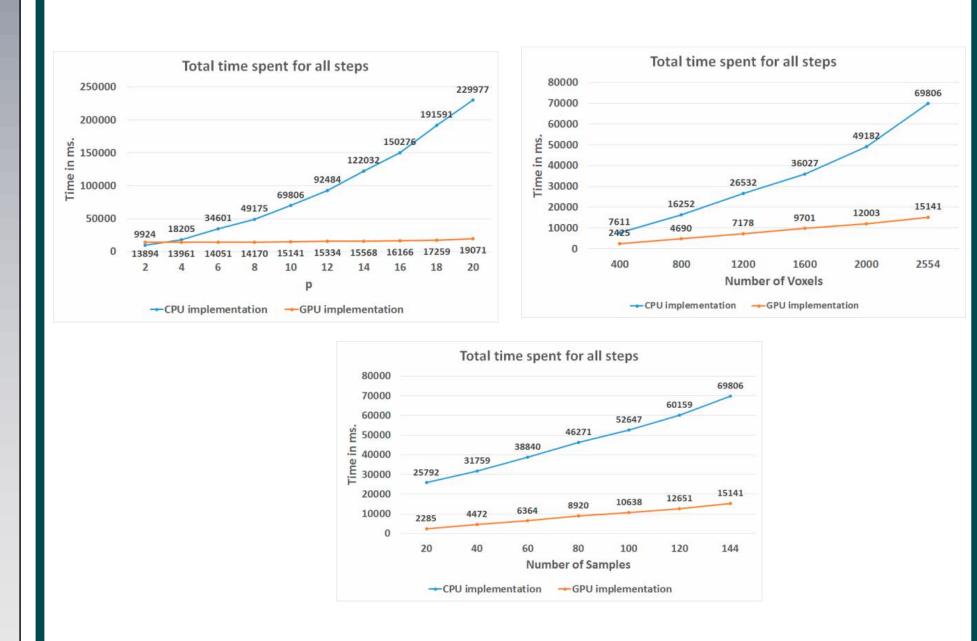
1. Multiply

Obtain

 $\left(R_{i,j}^T R_{i,j} + \lambda I\right)^{-1}$

weights,

Results and Discussion



- Total time spent for all steps significantly increases as the number of neighbors and voxels increase
- Number of samples does not affect the performance of Step1
- Number of neighbors (p) does not significantly affect the performance of LU factorization and matrix inversion of CUBLAS library functions
- In all experiments, we obain a speedup with GPU implementation over CPU implementation

CPU: Intel i7 3770K CPU @3.50 GHz with 32GB memory GPU: GeForce GTX 670 device with CUDA Runtime Version 6.5

Conclusion

- Extraction of spatial and temporal features relies on solving a ridge regression for different parts of data.
- Parallel implementation with CUDA significantly reduces the time spend for extraction.

References

[1] A. Eklund, M. Bjornsdotter, J. Stelzer and S. LaConte, 'Searchlight goes gpu - fast multi-voxel pattern analysis of fmri data', *International society* for magnetic resonance in medicine (ISMRM)

[2] O. Firat, I. Onal, E. Aksan, B. Velioglu, I. Oztekin and F. T. Y.arman Vural, 'Large scale functional connectivity for brain decoding' BioMed

[3] M. B. Aberg and J. Wessberg, 'An evolutionart approach to the identification of informative voxel clusters for brain state discrimination', IEEE Journal of selected topics in signal processing, vol. 2, pp 919 – 928,