
Entropy Harvesting in GPU[1]

CUDA Code for Collecting Entropy

Using GPU as Hardware Random Number Generator
Taeill Yoo, Yongjin Yeom

Department of Financial Information Security, Kookmin University, South Korea

Abstract
Random number generator (RNG) is expected to provide unbiased, unpredictable

bit sequences. RNG collects entropy from the environments and accumulates it
into the pool. Then from the entropy pool, RNG generates seed with high entropy
as input to the cryptographic algorithm called pseudo-random bit generator.

Since the lack of entropy sources leads the output random bits predictable, it is
important to harvest enough entropy from physical noise sources. Here, we show
that we can harvest sufficient entropy from the race condition in parallel
computations on GPU. According to the entropy estimations in NIST SP 800-90B,
we measure the entropy obtained from NVIDIA GPU such as GTX690 and GTX780.
Our result can be combined with high speed random number generating library
like cuRAND. To sum up, GPU can be used as hardware random number generator
with physical entropy source.

Experiments
 GPU: GTX780 (We successfully run the same experiments on 610M & 690, too)
 Array Size: 512 elements
 The number of iterations: 1,000
 The number of Threads: 512
 The number of experiments: 5 (colored lines in the graph below)

Entropy Estimation by NIST 800-90B[2]

What is RNG?
 Random number generator (RNG) produces sequences of random numbers.

(An ideal model is a fair coin toss)
 Pseudo-random number generator (PRNG) is a deterministic algorithm to

generate random sequences (possibly a part of RNG).
 Applications: cryptography, computer simulation, game, etc.
 Requirements: unbiased (the same number of 0 and 1), unpredictable, etc.

Structure of RNG

 Collecting Entropy : harvests entropy from the environments or internal sources
 Entropy Pool: accumulate s and maintain entropy using the pool
 PRNG: outputs random sequences by the deterministic algorithm

Practical RNG:
 PRNG can be chosen among ISO standard algorithms such as CTR_DRBG,

HASH_DRBG, etc.
 The main difficulty lies in collecting entropy (No standards available).

Conclusion and Future Work
Collecting sufficient entropy for cryptographic module is challenging particularly

for software module. We have shown that we can make use of GPU as entropy
source and performed entropy estimation according to new methodology NIST
800-90B. We are planning to implement remaining parts of RNG on GPU including
cryptographic algorithms so that GPU works as completely independent RNG
containing entropy source.

References
[1] Y. Yeom, Generating Random Numbers for Cryptographic Modules Using Race Conditions in GPU, GDC 2012, Springer CCIS 351, pp. 96-102 (2012)
[2] E. Barker, J. Kelsey, Recommendation for the Entropy Sources Used for Random Bit Generation. NIST Draft Special Publication 800-90B (2012)
[3] C. Hennebert, H. Hossayni, C. Lauradoux, The entropy of wireless statistics, European Conference on Networks and Communications (2014)
[4] C. Hennebert, H. Hossayni, C. Lauradoux, Entropy harvesting from physical sensors, Proceedings of the sixth ACM conference on Security and privacy in wireless and mobile networks, pp. 149-154 (2013)

Race Condition during parallel computation on GPU:
 When two or more cores try to update shared resources, a race condition

occurs inevitably and brings about an unexpected result.
 In general, it is important to avoid race conditions in parallel computing.
 However, we raise race condition intentionally so as to collecting entropy

from the uncertainty.

Entropy
Source

Estimated
Entropy

Sample Size
Data Range Entropy

Per Bit
Reference

Min Max
Wireless(LQI) 0.47 8 bits - - 0.059

Hennebert et al. [3]
Packet Payload 2.8 320 bits - - 0.009

Accelerometer X 0.22 9 bits 1 489 0.024

Hennebert et al. [4]
Accelerometer Y 0.42 9 bits 1 1024 0.047
Accelerometer Z 0.36 9 bits 1 11 0.040
Vibration sensor 0.17 16 bits 44 1018 0.011
Magnetic Sensor 0.62 16 bits 9 216 0.039

GTX 690 0.50 4 bits 15222 15296 0.125
Our results

GTX 780 0.60 4 bits 15529 15614 0.150

CUDA Source Code: Generating random noise using race conditions in GPU

/* Kernel function generating random noise */

__global__ void

RaceCondition(int *devArray, int nSize, int nIteration)

{

int tid = threadIdx.x; //get thread ID

devArray[tid] = 0; //initialization of array in global memory

__shared__ int sharedArray[ARRAY_SIZE]; //(default)ARRAY_SIZE = 512

sharedArray[tid] = devArray[tid]; //initialize shared memory

__syncthreads(); //confirm the initialization

/* Update shared memory that gives rise to Race condition */

for(int i=0; i<nIteration; i++) {

for(int j=0; j<nSize; j++) {

sharedArray[j]++;

}

}

__syncthreads();

devArray[tid] = sharedArray[tid]; //copy to global memory

__syncthreads();

}

15400

15420

15440

15460

15480

15500

15520

15540

15560

15580

15600

1 101 201 301 401 501

S
h
a
r
e
d
A
r
r
a
y
[
i
d
x
]

(R
an

do
m

 N
oi

se
)

idx (Index): 1~512

Random noise on GTX780

Collecting
Entropy

Accumulating Entropy
/Generating Seed

PRNG
(deterministic algorithm)

Output
(Random Sequence)Entropy

Sources

mouse
keyboard

IRQ
DISK

Entropy
Pool

Output
Buffer

Key V Provided data

V+1 V+2

AES AES

Key V

Update()

RNG
(Random Number Generator)

Entropy Sources
Random Numbers

(Table in Shared Memory)

Simultaneous
Updates

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

Core
7

Core
8

Iterate
for each
element

(Table in Shared Memory)

Unpredictable Result

Acknowledgements
1. This research was supported by Next-Generation Information

Computing Development Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Science, ICT &
Future Planning (No. NRF-2014M3C4A7030648)

2. This research was partially supported by BK21PLUS through the
National Research Foundation of Korea(NRF) funded by the Ministry of
Education, Science and Technology (Grant No. 31Z20130012918)

contact name

Yongjin Yeom: salt@kookmin.ac.kr
Poster

P5292

category: DeveloPer - Algorithms - DA12

