
Accelerating PCA for applications in finance using cuBLAS
Anubhav Jain, Easwar Subramanian and Amit Kalele

Tata Consultancy Services, India
anubhav.jain1@tcs.com, easwar@atc.tcs.com, kalele.amit@tcs.com 

DSYTRD PERFORMANCEABSTRACT

REFERENCES

PCA ALGORITHM & DESIGN

CLAPACK’s DSYEVR algorithm was used for computing Eigenvalues and Eigenvectors
• Tri-diagonalization done using Householder transformation

for j = 0 to n-1

• Compute vj the Householder Reflectors DLARFG(A, j)
• Compute vector pj = DsyMV(A, vj)
• Compute wj = pj – (1/2)*(pjT * vj) vj
• Update A = A – vjwjT – wjvjT = Dsyr2(A, v, w)
• Compute eigenvalues and eigenvectors DSTERM()

DSYEVR ALGORITHM

Main components of Principal Component Analysis
1. Client – Server based system for handling multiple PCA requests
2. Multi Stream – Multi Threaded application for concurrent request

processing
3. Fast Eigenvalue and Eigenvector computation module

GPU IMPLEMENTATION

• Compute time for the 4500 size matrix was ~60 seconds on CPU
• Over 95% of time was spent in the tri-diagonalization routine DSYTRD
• DSYMV and DSYR2 together contributes 99% of the time for DSYTRD
• Our approach – offload DSYTRD on GPU
• DSYTRD function was ported to GPU using cuBLAS library
• Following cuBLAS functions were used

• DNRM2, DSCAL, DSYMV, DDOT, DAXPY & DSYR2

Performance optimization
• cuBLAS: Optimal performance library was used for all BLAS routines
• Minimizing data transfers between host and device: Several other functions were also ported to

GPU to avoid frequent data transfers between host and device
• Multi-stream implementation for concurrent processing: Several simultaneous compute requests

need to be processed
• Each request is processed in a separate thread which is assigned to a unique

CUDA stream

57 56.6

28.63 27.9

9.3 8.73

4.74
3.4

5.467 4.86

1.496 2.19

0

10

20

30

40

50

60

Overall Dsyevr Dsytrd Dsymv Dsyr2

Ti
m

e 
in

 s
ec

DSYEVR Performance

CLAPACK GPU Enabled C2075 K20

DSYEVR Performance: CPU Vs C2075 Vs K20

In this work, we provide a way to accelerate the computation of principal components
of large correlation matrices. The input correlation matrix is formed from the historical
prices of the financial assets present in a client portfolio. Given a correlation matrix, a
partial Eigen spectrum containing the leading Eigen values and Eigen vectors of the
correlation matrix are found using the DSYEVR routine of the LAPACK package. We note
that in finding the partial Eigen spectrum of a large correlation matrix, the main
computational bottleneck is the tri-diagnolization of the input correlation matrix. To this
end, we perfrom tri-diagnolization of the correlation matrix completely on the GP-GPU.
Our tri-diagnolization algorithm is based on the DSYTRD routine of the LAPACK package
and uses several CuBLAS routines. In addition, we propose a multi-stream framework to
handle multiple PCA requests concurrently.

INTRODUCTION

Principal component analysis (PCA)
1. A mathematical procedure to extract the important components of data.
2. The important step in a PCA calculation is to compute the partial Eigen spectrum of

the input matrix.
3. Wide applications in various fields ranging from computer vision, neuroscience,

social science and computational finance.
4. Specifically, in the field of computational finance, PCA has relevance in portfolio

replication, statistical arbitrage, yield curve analysis, haircut computation
and formulation of trading strategies.

5. In application such as haircut, PCA computations may have to be performed very
frequently all through the day and big investment banks have a many client
portfolios which mandates simultaneous computation of PCA for all such portfolios.

Need for High performance computing in PCA
1. For large input matrices (for sizes > 2000)
2. For large number of matrices or PCA requests. 

In computing the partial Eigen spectrum of the input matrix, the compute intensive step
is mainly the tri-diagnolization of the input matrix. To this end, we propose a solution
that involves porting the tri-diagnolization operation to GP-GPU. To handle multiple
simultaneous requests we use the multi-stream framework.

DSYEVR Performance for Varying Matrix sizes

1. J. J. Dongarra, D. C. Sorenssen and S. J. Hammarling, Block reduction of matrices to condensed 
forms for Eigenvalue decompositions, Journal of computational and applied mathematics, 215-227, 
1989.
2. I. Yamazaki,T. Dong, R. Solcà, S. Tomov, J. J. Dongarra and T. Schulthess, Tridiagonalization of a 
dense symmetric matrix on multiple GPUs and its application to symmetric eigenvalue problems, 
Concurrency and computation : Practice and Experience, 2013.
3. I. Dhillon, A new O(n^2) algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem, 
Computer Science Division, Ph.D thesis, UC Berkeley, 1997. 

MUTLI REQUEST PCA SERVER WITH HYPERQ
• Multi threaded multi stream Implementation to handle simultaneous compute requests
• A pool of 32 threads and streams were created
• Each request is processed in a new thread from the pool
• Each thread is attached with a unique stream
• Streams perform better with HyperQ on Kepler

Approximately 4000 requests of varying matrix size were processed in 104
seconds on Kepler K20 GPU in 32 streams

0

20000

40000

60000

80000

100000

120000

140000

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Ti
m

e 
in

 m
s

Matrix Size

K20 C2075 CPU

CONCLUSIONS

1. Achieved over 11x speed up for DSYTRD computation for larger
matrices

2. Achieved 5x speed up for batch jobs ranging from size 3 to 6000

contact Name 

Easwar Subramanian: easwar@atc.tcs.com
Poster 

P5293

Category: Finance - FI01


