
Image Matching!
!
!
!
!
!
!
!

!
!

!
!
!
!
!
!
!
•  Mark feature points of two images and represent them as

nodes.!
•  Connections between nodes are represented by hyperedges. !
•  Conventional image matching algorithms use ordinary

graphs, which can only represent pair-wise relations.!
•  Hypergraphs can be used to represent more sophisticated

patterns and images.!

 Image Matching Using Hypergraphs on the GPU!
Lin Cheng1, Reid Delaney2, Minghui Liu2 and Peter Yoon2!

1Department of Engineering, Hartford, CT 2Department of Computer Science, Hartford, CT!

Abstract!
A hypergraph is a generalization of an ordinary graph in which
edges can connect any number of vertices. The process of
determining correspondence between the nodes in two
hypergraphs, called hypergraph matching, helps solve
problems such as image matching and object recognition.
However, it is computationally demanding, making it impractical
in real-world applications. Our main contribution is to accelerate
the process by implementing it on the GPUs. Our preliminary
result shows that a high accuracy and a high speed-up can be
achieved when try to matching two datasets using hypergraphs
when running on the GPU.!

Algorithm!
The algorithm based on a probabilistic approach of hypergraph matching [2]:!
1.  Take weight matrices of two hypergraphs and calculate the similarity scores

of every pair of edges. Each score indicates how similar a pair of edges are.!
2.  Calculate similarity scores of every pair of nodes and the resulting matrix,

called soft matching, contains the probabilities that any given pair of nodes
match. !

3.  Convert the soft matching result matrix into a permutation matrix that
contains only 1s and 0s, known as hard matching, gives a deterministic
answer to the matching problem.!

!

Implementation on GPU!
•  For hypergraphs with N nodes, launch a grid of N2 threads on the GPU.!
•  Each thread fetches data from edge weight matrices, calculates edge

similarity score, and stores the result in temporary matrices.!
•  Each thread then calculate vertex matching similarities using data in

temporary matrices.!

!

!
 !
!
!
!
!
!

Testing Method!
•  Generate random points on a 2D-plane.!
•  Represent their distances as edge weights to construct a hypergraph.!
•  Obtain the second hypergraph by rotating and distorting the first one.!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Preliminary Result!
Our result shows that the parallel implementation on GPUs
achieves a 8x to 10x speed up for moderate test sizes
compared to the serial implementation on CPUs.!

!
!
!
!
!
!
!
!

!
!
!
!
!
!
Specification: Dual Intel® Xeon® E5-2620 CPUs with 64GB main memory,
NVIDIA® Tesla® K20c GPU with 5GB memory.!
!
•  Y axis is drawn in log scale.!
•  Parallel implementation needs to allocate memory on and

copy inputs to the GPU and therefore has a large overhead
causing it to run slower for small test sizes.!

Future Directions!
•  Implement the algorithm on multi-GPU platforms to further

enhance performance.!
•  Sample and test using real images instead of randomly

generated datasets.!
•  Utilize tensors to extend the algorithm to support higher

degree hypergraphs.!

Hypergraphs!
Hyperedges may connect any number of vertices rather than
just two. This allows hypergraphs to model complex relations
such as relationships of users in a social network website, or the
reactions between compounds in a complex chemical reaction. !

Ordinary graph! Hypergraph with an edge that
connects 3 vertices!

Reference!
[1] Jungmin Lee, Minsu Cho, and Kyoung Mu Lee. "Hyper-
graph matching via reweighted random walks." Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference
on. IEEE, 2011.!
[2] Ron Zass, and Amnon Shashua. "Probabilistic graph and
hypergraph matching." Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE,
2008.!

Acknowledgement!
This research was supported by:!
•  CUDA Teaching Center Program, Nvidia Research!
•  Student Research Program, Trinity College!
!

After matching!Before matching!

Example image from [1] !

Soft matching!

Edge weight matrices!

Temporary matrix!

8	
 Nodes	
 16	
 Nodes	
 32	
 Nodes	
 64	
 Nodes	

128	

Nodes	

256	

Nodes	

512	

Nodes	

1024	

Nodes	

Parallel	
 0.07	
 0.08	
 0.19	
 0.55	
 2.92	
 26.29	
 310.79	
 4713.17	

Serial	
 0.000471	
 0.000619	
 0.094972	
 1.49	
 23.85	
 378.6	
 6043.23	
 97319.61	

0.0001	

0.001	

0.01	

0.1	

1	

10	

100	

1000	

10000	

100000	

Ti
m
e	

(s
ec

on
ds

)

Performance	
 Comparison

fetches!

Example (test size = 10)!

writes!

stores

contact Name

Peter Yoon: peter.yoon@trincoll.edu
Poster

P5298

Category: Video & Image Processing - Vi07

