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•  Mark feature points of two images and represent them as 

nodes.!
•  Connections between nodes are represented by hyperedges. !
•  Conventional image matching algorithms use ordinary 

graphs, which can only represent pair-wise relations.!
•  Hypergraphs can be used to represent more sophisticated 

patterns and images.!
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Abstract!
A hypergraph is a generalization of an ordinary graph in which  
edges can connect any number of vertices. The process of 
determining correspondence between the nodes in two 
hypergraphs, called hypergraph matching, helps solve 
problems such as image matching and object recognition. 
However, it is computationally demanding, making it impractical 
in real-world applications. Our main contribution is to accelerate 
the process by implementing it on the GPUs. Our preliminary 
result shows that a high accuracy and a high speed-up can be 
achieved when try to matching two datasets using hypergraphs 
when running on the GPU.!

Algorithm!
The algorithm based on a probabilistic approach of hypergraph matching [2]:!
1.  Take weight matrices of two hypergraphs and calculate the similarity scores 

of every pair of edges. Each score indicates how similar a pair of edges are.!
2.  Calculate similarity scores of every pair of nodes and the resulting matrix, 

called soft matching, contains the probabilities that any given pair of nodes 
match. !

3.  Convert the soft matching result matrix into a permutation matrix that 
contains only 1s and 0s, known as hard matching, gives a deterministic 
answer to the matching problem.!
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Implementation on GPU!
•  For hypergraphs with N nodes, launch a grid of N2 threads on the GPU.!
•  Each thread fetches data from edge weight matrices, calculates edge 

similarity score, and stores the result in temporary matrices.!
•  Each thread then calculate vertex matching similarities using data in 

temporary matrices.!
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Testing Method!
•  Generate random points on a 2D-plane.!
•  Represent their distances as edge weights to construct a hypergraph.!
•  Obtain the second hypergraph by rotating and distorting the first one.!
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Preliminary Result!
Our result shows that the parallel implementation on GPUs 
achieves a 8x to 10x speed up for moderate test sizes 
compared to the serial implementation on CPUs.!
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Specification: Dual Intel® Xeon® E5-2620 CPUs with 64GB main memory, 
NVIDIA® Tesla® K20c GPU with 5GB memory.!
!
•  Y axis is drawn in log scale.!
•  Parallel implementation needs to allocate memory on and 

copy inputs to the GPU and therefore has a large overhead 
causing it to run slower for small test sizes.!

Future Directions!
•  Implement the algorithm on multi-GPU platforms to further 

enhance performance.!
•  Sample and test using real images instead of randomly 

generated datasets.!
•  Utilize tensors to extend the algorithm to support higher 

degree hypergraphs.!

Hypergraphs!
Hyperedges may connect any number of vertices rather than 
just two. This allows hypergraphs to model complex relations 
such as relationships of users in a social network website, or the 
reactions between compounds in a complex chemical reaction. !

Ordinary graph! Hypergraph with an edge that 
connects 3 vertices!
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Example image from [1] !

Soft matching!

Edge weight matrices!

Temporary matrix!
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