
Introduction 

Support 
Vector 

Machine 

A fundamental 
supervised 
learning 

algorithm 

Successful for 
various 

classification 
problems 

High 
computational 

complexity Sensitive to 
changes to its 

meta-
parameters 

Based on 
previous work 

from [1] 

OpenACC-SVM 

Improve classification 
accuracy through extensive 

parameter search 

Maintain scalability and 
code readability by using 
OpenACC on multi-GPU 

Show the benefits of 
automatic parallelization 

for GPU computing 

Explore various feature 
types and problem sizes 

Methods 

•  [1] V. Codreanu, B. Droge, D. Williams, B. Yasar, P. Yang, 
B.Q. Liu, F. Dong, J. Roerdink, M. Wiering, "Evaluating 
automatically parallelized versions of the Support Vector 
Machine", Concurrency and Computation: Practice & 
Experience, 2014. doi: 10.1002/cpe.3413 

Experimental results 

Bangla 
digit 

dataset 

5th known 
language 

in the 
world 

36x36 
pixel 

images 

9161 
instances 
for train 

1500 
instances 
for test 

EVALUATING AUTOMATICALLY PARALLELIZED VERSIONS OF THE SUPPORT VECTOR MACHINE 11

Algorithm 5 Optimized GPSME implementation for computing the training kernel matrix
#pragma GPSME copy (learn_data, toDevice, TOTAL*NR_FEATURES)
#pragma GPSME copy (kernel_train, toDevice, TOTAL*TOTAL)
#pragma GPSME for nest(2) tile(tx,ty)
for (episode = 0; episode < TOTAL; ++episode)

for (int ad = episode; ad < TOTAL; ++ad) {
float diff;
float sqdiff = 0.0f;
float output;
for (feat = 0; feat < NR_FEATURES; ++feat) {
diff = learn_data.input[episode*NR_FEATURES+feat] -

learn_data.input[ad*NR_FEATURES+feat]
sqdiff += diff*diff;
}

output = expf(-sqdiff / sigma);
kernel_train[episode*TOTAL+ad] = output;
}

#pragma GPSME copy (kernel_train, fromDevice, TOTAL*TOTAL)

Figure 3. Transformation from uncoalesced to coalesced memory accesses.

increase when using SoA instead of AoS for representing the input data. The benefits are seen in
both parallelizing tools’ cases. The code resulting from this change is presented in Algorithm 5.

With both GPSME and OpenACC, the two independent outer loops can be safely parallelized onto
a 2D thread block. Therefore, each device thread should run the innermost for-loop sequentially.
This leads to the memory access pattern on the left side of Figure 3. In this case, the first thread reads
the first chunk of NR FEATURES elements from the learn data array, the second thread needs the
second chunk of NR FEATURES elements, and so on. The recommended way is to have consecutive
threads read consecutive memory locations, referred to as coalesced memory accesses. This can be
achieved through reordering of the learn data array. By transposing the matrix represented by the
learn data array (i.e. by storing the matrix in column-major order instead of row-major order) at its
initialization, the code from Algorithm 5 can easily be modified to access the array in a coalesced
way, adhering to the right side of Figure 3. This change made the resulting code up to 3 times faster
than the previous version.

We have described the type of modifications that were necessary in order to obtain high-quality
GPU code from both the GPSME toolkit and PGI’s OpenACC compiler. Although the techniques
presented here are exemplified using the GPSME model, the same techniques have been applied
for the OpenACC model. We consider these changes very easy-to-make by the typical OpenMP
programmer, if he/she is provided with some recommendations for efficient GPU computing and
with a series of examples.
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•  Extensive parameter tuning allows for significantly better SVM 
classification accuracy results. 

•  Performs significantly faster than the OpenMP version, and is also 
comparable to GPU-based SVM libraries (see [1]). 

•  The 2-stage parallelization scheme provides good scalability, both in 
terms of problem size and number of GPU devices. 

•  Allowed for the best Bangla result so far, 99.15% accuracy! 
•  It takes 19 hours to tune the parameters for the Bangla-pixel dataset on 

the dual-K40s and 8.1 days on the 24-core Xeon! 

Conclusion 
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#pragma acc data 
pcopyin(learn_data[0:leer_tot*feature_num]) 
pcopy(kernel_train_pgi[0:leer_tot*leer_tot]) 
{ 
#pragma acc parallel loop collapse(2)  
for (episode = 0; episode < leer_tot; ++episode) { 
   for (ad = episode; ad < leer_tot; ++ad) { 
       float diff; 
       float sqdiff = 0.0f; 
       float output; 
       #pragma acc loop 
       for (feat = 0; feat < feature_num; ++feat) { 
            diff = learn_data[feat*leer_tot + episode] –  
                     learn_data[feat*leer_tot + ad]; 
            sqdiff += diff*diff; 
       } 
       output = expf(-sqdiff / sigma); 
       kernel_train_pgi[ad*leer_tot+episode] = output; 
       kernel_train_pgi[episode*leer_tot+ad] = output; 
    } 
  } 
} 
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Dataset and feature description 

•  Started from a single-thread implementation of the SVM. 
•  The SVM is written in C++,  augmented with OpenACC and OpenMP pragmas. 
•  2 main code optimizations were performed: 

•  (i) Arrays of structures are transformed to structures of arrays. 
•  (ii) Minor data rearrangement to allow for memory coalescence. 

•  Particle Swarm Optimization (PSO) is implemented in Python: 
•  PSO computes the next sets of parameters and launches SVM 

processes when GPU devices become available. 

(i) 

(ii) 

36 pixels 

36
 p

ix
el

s 

The difference in accuracy is highly statistically significant, with 
more than 20% classification error reduction in both cases. 

Three functions were augmented with 
OpenACC and OpenMP directives: 
•  Kernel matrix computation (KMC). (iii) 
•  Gradient-ascent learning (GAL). 
•  Bias computation (BC). 

2-stage parallelization scheme: 
•  SVM instance is parallelized for a 

single GPU. 
•  PSO distributes SVM instances to 

multiple GPUs 
•  SVM instances are 

completely independent. 
 

(iii) 

Test setup 

CPU: 2x E5-2695 
v2 @ 2.40GHz 

(24 cores) 
GPU: 2x Tesla 

K40m 

Feature size Nr. examples 
(train/test) 

KMC time [s] GAL time [s] 

128 9161/1500 1.01 7.03 
1296 9161/1500 2.29 8.15 
1296 5497/1500 0.82 3.26 
12800 9161/1500 17.18 10.23 

Good performance 
scaling both in terms 

of feature size and 
number of examples 

We perform PSO runs with 10,000 particles to find the best meta-parameters for 
both the pixel and SIFT-based feature types. Both GPU devices are used 

independently. 

We choose the handwritten character classification problem for Bangla (Bengali) 
digits to evaluate our approach 
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