POSTER CONTACT NAME Valeriu Co

Handwritten Character Classification using GPUs and OpenACC

SURF SARA

rijksuniversiteit
groningen

rmance

ı in term

size and

examples

Valeriu Codreanu (SURFsara, The Netherlands)
Olarik Surinta, Marco A. Wiering (University of Groningen, The Netherlands)

Introduction

- Started from a single-thread implementation of the SVM.
- The SVM is written in C++, augmented with OpenACC and OpenMP pragmas.
- 2 main code optimizations were performed:
 - (i) Arrays of structures are transformed to structures of arrays.
 - (ii) Minor data rearrangement to allow for memory coalescence.
- Particle Swarm Optimization (PSO) is implemented in Python:
 - PSO computes the next sets of parameters and launches SVM processes when GPU devices become available.

Methods

#pragma acc data pcopyin(learn_data[0:leer_tot*feature_num]) pcopy(kernel_train_pgi[0:leer_tot*leer_tot])

Three functions were augmented with OpenACC and OpenMP directives:

- Kernel matrix computation (KMC). (iii)
- Gradient-ascent learning (GAL).
- Bias computation (BC).

2-stage parallelization scheme:

- SVM instance is parallelized for a single GPU.
- PSO distributes SVM instances to multiple GPUs
 - SVM instances are completely independent.

Dataset and feature description

We choose the handwritten character classification problem for Bangla (Bengali) digits to evaluate our approach

128-dimensional SIFT-based feature (Bangla-SIFT)

1296-dimensional pixel-based feature (Bangla-pixel)

Experimental results

We perform PSO runs with 10,000 particles to find the best meta-parameters for both the pixel and SIFT-based feature types. Both GPU devices are used independently.

Feature size	Nr. examples (train/test)	KMC time [s]	GAL time [s]		Good performance scaling both of feature s
128	9161/1500	1.01	7.03		
1296	9161/1500	2.29	8.15		
1296	5497/1500	0.82	3.26		number of e
12800	9161/1500	17.18	10.23		

The difference in accuracy is highly statistically significant, with more than 20% classification error reduction in both cases.

Conclusion

- Extensive parameter tuning allows for **significantly** better SVM classification accuracy results.
- Performs **significantly** faster than the OpenMP version, and is also comparable to GPU-based SVM libraries (see [1]).
- The 2-stage parallelization scheme provides good scalability, both in terms of problem size and number of GPU devices.
- Allowed for the best Bangla result so far, 99.15% accuracy!
- It takes 19 hours to tune the parameters for the Bangla-pixel dataset on the dual-K40s and 8.1 days on the 24-core Xeon!

[1] **V. Codreanu**, B. Droge, D. Williams, B. Yasar, P. Yang, B.Q. Liu, F. Dong, J. Roerdink, M. Wiering, "Evaluating automatically parallelized versions of the Support Vector Machine", Concurrency and Computation: Practice & Experience, 2014. doi: 10.1002/cpe.3413