
Introduction

Support
Vector

Machine

A fundamental
supervised
learning

algorithm

Successful for
various

classification
problems

High
computational

complexity Sensitive to
changes to its

meta-
parameters

Based on
previous work

from [1]

OpenACC-SVM

Improve classification
accuracy through extensive

parameter search

Maintain scalability and
code readability by using
OpenACC on multi-GPU

Show the benefits of
automatic parallelization

for GPU computing

Explore various feature
types and problem sizes

Methods

•  [1] V. Codreanu, B. Droge, D. Williams, B. Yasar, P. Yang,
B.Q. Liu, F. Dong, J. Roerdink, M. Wiering, "Evaluating
automatically parallelized versions of the Support Vector
Machine", Concurrency and Computation: Practice &
Experience, 2014. doi: 10.1002/cpe.3413

Experimental results

Bangla
digit

dataset

5th known
language

in the
world

36x36
pixel

images

9161
instances
for train

1500
instances
for test

EVALUATING AUTOMATICALLY PARALLELIZED VERSIONS OF THE SUPPORT VECTOR MACHINE 11

Algorithm 5 Optimized GPSME implementation for computing the training kernel matrix
#pragma GPSME copy (learn_data, toDevice, TOTAL*NR_FEATURES)
#pragma GPSME copy (kernel_train, toDevice, TOTAL*TOTAL)
#pragma GPSME for nest(2) tile(tx,ty)
for (episode = 0; episode < TOTAL; ++episode)

for (int ad = episode; ad < TOTAL; ++ad) {
float diff;
float sqdiff = 0.0f;
float output;
for (feat = 0; feat < NR_FEATURES; ++feat) {
diff = learn_data.input[episode*NR_FEATURES+feat] -

learn_data.input[ad*NR_FEATURES+feat]
sqdiff += diff*diff;
}

output = expf(-sqdiff / sigma);
kernel_train[episode*TOTAL+ad] = output;
}

#pragma GPSME copy (kernel_train, fromDevice, TOTAL*TOTAL)

Figure 3. Transformation from uncoalesced to coalesced memory accesses.

increase when using SoA instead of AoS for representing the input data. The benefits are seen in
both parallelizing tools’ cases. The code resulting from this change is presented in Algorithm 5.

With both GPSME and OpenACC, the two independent outer loops can be safely parallelized onto
a 2D thread block. Therefore, each device thread should run the innermost for-loop sequentially.
This leads to the memory access pattern on the left side of Figure 3. In this case, the first thread reads
the first chunk of NR FEATURES elements from the learn data array, the second thread needs the
second chunk of NR FEATURES elements, and so on. The recommended way is to have consecutive
threads read consecutive memory locations, referred to as coalesced memory accesses. This can be
achieved through reordering of the learn data array. By transposing the matrix represented by the
learn data array (i.e. by storing the matrix in column-major order instead of row-major order) at its
initialization, the code from Algorithm 5 can easily be modified to access the array in a coalesced
way, adhering to the right side of Figure 3. This change made the resulting code up to 3 times faster
than the previous version.

We have described the type of modifications that were necessary in order to obtain high-quality
GPU code from both the GPSME toolkit and PGI’s OpenACC compiler. Although the techniques
presented here are exemplified using the GPSME model, the same techniques have been applied
for the OpenACC model. We consider these changes very easy-to-make by the typical OpenMP
programmer, if he/she is provided with some recommendations for efficient GPU computing and
with a series of examples.

Copyright c� 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
Prepared using cpeauth.cls DOI: 10.1002/cpe

0

100000

200000

300000

400000

500000

600000

700000

800000

PSO timing comparison

Training time [s]

Handwritten Character Classification using GPUs and OpenACC
Valeriu Codreanu (SURFsara, The Netherlands)

Olarik Surinta, Marco A. Wiering (University of Groningen, The Netherlands)

•  Extensive parameter tuning allows for significantly better SVM
classification accuracy results.

•  Performs significantly faster than the OpenMP version, and is also
comparable to GPU-based SVM libraries (see [1]).

•  The 2-stage parallelization scheme provides good scalability, both in
terms of problem size and number of GPU devices.

•  Allowed for the best Bangla result so far, 99.15% accuracy!
•  It takes 19 hours to tune the parameters for the Bangla-pixel dataset on

the dual-K40s and 8.1 days on the 24-core Xeon!

Conclusion

0

1

2

3

4

5

6

Error comparison, 10-fold cross
validation

Error [%]

#pragma acc data
pcopyin(learn_data[0:leer_tot*feature_num])
pcopy(kernel_train_pgi[0:leer_tot*leer_tot])
{
#pragma acc parallel loop collapse(2)
for (episode = 0; episode < leer_tot; ++episode) {
 for (ad = episode; ad < leer_tot; ++ad) {
 float diff;
 float sqdiff = 0.0f;
 float output;
 #pragma acc loop
 for (feat = 0; feat < feature_num; ++feat) {
 diff = learn_data[feat*leer_tot + episode] –
 learn_data[feat*leer_tot + ad];
 sqdiff += diff*diff;
 }
 output = expf(-sqdiff / sigma);
 kernel_train_pgi[ad*leer_tot+episode] = output;
 kernel_train_pgi[episode*leer_tot+ad] = output;
 }
 }
}

Handwritten Bangla digit samples (a) from 0 to 4
and (b) from 5 to 9

(a) (b)

128-dimensional SIFT-based feature (Bangla-SIFT)
1296-dimensional pixel-based

feature (Bangla-pixel)

Kernel matrix
computation

Gradient
ascent

learning

Particle
swarm

optimization

Dataset and feature description

•  Started from a single-thread implementation of the SVM.
•  The SVM is written in C++, augmented with OpenACC and OpenMP pragmas.
•  2 main code optimizations were performed:

•  (i) Arrays of structures are transformed to structures of arrays.
•  (ii) Minor data rearrangement to allow for memory coalescence.

•  Particle Swarm Optimization (PSO) is implemented in Python:
•  PSO computes the next sets of parameters and launches SVM

processes when GPU devices become available.

(i)

(ii)

36 pixels

36
 p

ix
el

s

The difference in accuracy is highly statistically significant, with
more than 20% classification error reduction in both cases.

Three functions were augmented with
OpenACC and OpenMP directives:
•  Kernel matrix computation (KMC). (iii)
•  Gradient-ascent learning (GAL).
•  Bias computation (BC).

2-stage parallelization scheme:
•  SVM instance is parallelized for a

single GPU.
•  PSO distributes SVM instances to

multiple GPUs
•  SVM instances are

completely independent.

(iii)

Test setup

CPU: 2x E5-2695
v2 @ 2.40GHz

(24 cores)
GPU: 2x Tesla

K40m

Feature size Nr. examples
(train/test)

KMC time [s] GAL time [s]

128 9161/1500 1.01 7.03
1296 9161/1500 2.29 8.15
1296 5497/1500 0.82 3.26
12800 9161/1500 17.18 10.23

Good performance
scaling both in terms

of feature size and
number of examples

We perform PSO runs with 10,000 particles to find the best meta-parameters for
both the pixel and SIFT-based feature types. Both GPU devices are used

independently.

We choose the handwritten character classification problem for Bangla (Bengali)
digits to evaluate our approach

contact Name

Valeriu Codreanu: valeriu.codreanu@surfsara.nl
Poster

P5299

Category: Machine Learning & Deep Learning - ML05

