
 

580.0

330.0

159.4

17.9

0 200 400 600 800

PostgreSQL / Galactica

LogicBlox / Red Fox

MonetDB

MonetDB / AXE

msec - plan execution

Accelerated Processing Time
TPC-H Query 1, Scale Factor 1

Towards a real GPU-speedup in SQL query processing
with a new heterogeneous execution framework

Motivation and contribution summary State of the art (?) Optimization via graph rewriting

Results, and a bit of analysis

SELECT sum(Data) 
FROM Table 
GROUP BY Key;

Host DBMS SQL Parser 
& Initial Execution Plan Generator

DBMS Intermediate Representation

AXE : Partitioning & Device Selection

Logical AXE Execution Plan

Realized AXE Execution Plan

AXE: Run-Time Engine
Device 

Abstraction Layer

Execution Graph 
Compiler & Optimizer

Analytic SQL Query

Multiple device support via graph partitions

1. Logical
Execution 

Graph

2. Device 
Selection

3. Multi-Device
Partitioning

4. I/O Operations
Added

1. The AXE execution environment receives 
a ‘Logical’ Execution Graph, from an 
(arbitrary) application.

2. This graph is then partitioned into  
subgraphs; each can be assigned to a subset 
of the available devices (CPUs and GPUs).

3. Subgraphs are replicated for processing 
on multiple devices, with splitter/joiner 
nodes effecting partitions of the data.

4. I/O operations are added as necessary to 
move data between devices’ memory 
spaces.

The Logical Execution Graph is now a 
Realized Execution Graph ready for 
execution by AXE’s Run-Time Engine.

Questions to ponder:    - Where do splitters/joiner nodes get run?     - Why do we choose certain nodes for a subgraph?     - Why choose only some devices for subgraph execution?

SQL-related 
operations

generic 
operations

Some challenges for future work

Note: Preprocessing and data regularization also benefits CPU execution of queries – but GPUs benefit more.

Preprocessing ⇒ Parallelism

Realized plan execution
Our AXE execution environment 
uses its device abstraction layer 
to schedule execution on 
multiple devices.

Possible optimizations include:
· Overlapped I/O & computation
· Simultaneous I/O to multiple 

devices
· Parallel multi-device execution
· Graph node task parallelism
· Graph node data parallelism

… but it’s generally 
not useful to apply these
all together to any single 
subgraph.

· Increase SQL coverage & support other DSLs.
· Support more processors types, vendors & 

platforms (APUs, OpenCL-based devices)
· GPU Memory management
· Automatic fusion of consecutive operations.

· Improve I/O and computation overlap.
· Fully utilize CPU vectorization capabilities to  

explore more optimal mixtures of execution on 
the CPU and on the GPU.

· et cetera.

We have presented results from a first iteration of development. We plan to develop it with and 
without relation to the use-case of SQL processing, adding several features enhancing usability as 
well as performance:

As our framework matures, we hope to secure approval for its release as Free Software.

Recent work on speeding up SQL 
query processing, presented at this 
conference last year (GTC’14): 

· RedFox (Wu & al., also in CGO’14)
· Galactica (Yong & al. also BDS’14)

… but the reference DBMSes used 
are quite slow compared to top-
performing (columnar) DBMSes.

We graft our framework onto 
MonetDB; its unmodified CPU 
processing is often faster than GPU-
accelerated results in previous works 
(before our changing anything.)

It seems that we are just entering
the ‘ballpark’ for exploring GPGPU 
acceleration of SQL query processing.

Note: The above does not regard a contribution of this work.

Pre-calculated query-inspecific column statistics:
· Specifically permitted by the TPC-H benchmark.
· Can be (partially) maintained during execution.
· Allow for data regularization,

and for assumptions of locality,
· which in turn facilitate parallel processing.

Example: how would we execute the query fragment above?

· Typical execution, 
without any 
preprocessing of the 
Key column. Groups 
are materialized for 
aggregation.

· A pre-calculated Group 
Index for the Key 
column is available; we 
use it as an offset into 
the aggregates vector.

A common query fragment...

THIS IS A

WIP
THIS IS A

WIP

· At this time, our fragment of 
supported SQL only allows us to 
process some of the TPC-H queries 
(with relative efficiency). The charts 
present results for Q1, Q4 and Q9.

· When possible, we have timed a 
multithreaded CPU run with the same 
Logical Execution Graph, for 
reference (for some queries, we have 
still not completed necessary work to 
allow this).

· Our ‘aggressive’ graph rewriting is 
well reflected in the set of top GPU 
compute time consumers:
· In Q1 we see the significance of the 

GROUP-BY Sum transformation.
· In both Q4 and Q9 we see 

consumers whose use is in no way 
evident from the query itself (e.g. 
outputing the indices of 
bits turned on in a vector of 
booleans).

· It is also important to present a 
complete breakdown of the query 
processing time into the various 
kinds of activity other than just GPU 
compute and memory transfers. On 
the other hand, as the scale factor 
increases, these become less 
significant.

· At this time, our fragment of 
supported SQL only allows us to 
process some of the TPC-H queries 
(with relative efficiency). The charts 
present results for Q1, Q4 and Q9.

· When possible, we have timed a 
multithreaded CPU run with the same 
Logical Execution Graph, for 
reference (for some queries, we have 
still not completed necessary work to 
allow this).

· Our ‘aggressive’ graph rewriting is 
well reflected in the set of top GPU 
compute time consumers:
· In Q1 we see the significance of the 

GROUP-BY Sum transformation.
· In both Q4 and Q9 we see 

consumers whose use is in no way 
evident from the query itself (e.g. 
outputing the indices of 
bits turned on in a vector of 
booleans).

· It is also important to present a 
complete breakdown of the query 
processing time into the various 
kinds of activity other than just GPU 
compute and memory transfers. On 
the other hand, as the scale factor 
increases, these become less 
significant.

The DSL-to-execution-graph compilation component 
has a triple functionality:

· Compiling the host DBMS’ internal execution plan 
representation into graph form.

· Transforming the graph to make it acceptable input 
for the application-agnostic execution environment 
(AXE).

· Effecting execution graph optimizations, in view of 
the available resources reported by AXE.

The latter two are affected through repeated 
application of multiple graph rewriting rules :

· Removing redundant nodes.
· Breaking up nodes representing complex 

operations into simpler, constituent operations 
(available to AXE)

· Re-integrating simpler computations into more 
complex, specifically-optimized ones.

· Replacing general-case computation with better-
performing special-case 

· Adjusting computation on individual input columns 
to utilize pre-calculated statistics.

CPUs used: RedFox – 2 x Xeon 2670 Galactica – 1 x Xeon 5680 This work – 2 x Xeon 2690
GPU used:  RedFox – GTX Titan Galactica – Tesla K40c This work – GTX 780 Ti
While some adjustment may be necessary, the CPUs are close in performance and for the GPUs, review websites present 
different advantages for each card. Timing values are therefore not normalized except for an optimistic factor 0.5 applied to 
the PostgreSQL CPU performance figure. MonetDB version used: 11.15.15

At this time, the above is implemented only for a fragment of analytic SQL.

Note: In all queries, the sum of these is still far below the total plan execution time. The rest is non-overlapped I/O, GPU idle time, and post-GPU-activity work on the CPU.

621
0

P… msec -…

Ref…

Foreign Key Join Avoidance: Required preprocessing: 
Determine the 
maximum value of each 
primary key column.

Breaking operations up allows for cancel-out: Required preprocessing: 
None.

The GROUP BY Sum example (bottom of this poster): Required preprocessing: 
Group Index column for 
schema colum T.c2

A ...

N ...
N ...

R ...
R
R

...

...

A

R

N

...

...

...

A ...
R
N
R
R
N

...

...

...

...

...

Key

Data

Key

Data

Key

∑
 Data

AggregationGROUP BY
Materialization

Splitter

f()

g()

f()

g()

Joiner

a()

h2d h2d

b()

d2h d2h

f()

g()

a()

b()

 ← This work ← This work

The contribution of this work-in-progress consists of:

1. An application-agnostic execution environment, 
(named AXE) supporting data and task parallelism over 
multiple GPUs and CPUs.
2. A analytic SQL processing framework, incorporating 
this engine, achieving significant speedups  relative to a 
performant DBMS - via...

2.1 Pre-processing data to enhance parallelism.
2.2 Hardware-minded optimization of execution graph 
with rewriting rules.
2.3 Breaking SQL-processing-related computational 
operations and constituting alternate ones, easier to 
optimize.

6,000

2,760

159

0 2,000 4,000 6,000 8,000

PostgreSQL

LogicBlox

MonetDB

msec - plan execution

Reference CPU Processing Time
TPC-H Query 1, Scale Factor 1

A ...
R
N
R
R
N

...

...

...

...

...

Key

Data

Key

Data

∑ Data

Group Index
Calculation

Group Index
Calculation

A ... 0
R
N
R
R
N

... 1

... 0

... 2

... 2

... 2

Group

Group-Indexed
Aggregation

Group-Indexed
Aggregation

Group

0 ...
1
2

...

...

a()

Splitter

Joiner

f()

g()

f()

g()

GPU 2GPU 1

b()

f()

g()

a()

GPU

CPU

CPUb()

Notes: 1. The measured times do not include execution DBMS parsing & plan generation, execution graph optimization etc.; see below
2. Currently, (multi-threaded) CPU multi-GPU execution rely on data partitioning of the respective execution graph. These are not yet ready for Q4 and Q21.

· An ongoing concern of the IC&T 
industry is maximizing analytic DBMS 
performance  – with GPUs showing 
some promise towards this end. 

· Previous works have shown speedups 
through the use of a GPU, but it was 
still unclear if their solutions are 
competitive with more performant 
CPU-based DBMSes.

Overall query processing time – activity breakdown

GPU compute time breakdown by operation (top 5 time-consumers):

Plan Execution Time Acceleration: TPC-H Queries

217.5

290.6

32.2

Q21

Scale Factor 1

MonetDB
MonetDB/AXE CPU
MonetDB/AXE 1 GPU
MonetDB/AXE 2 GPUs

356.3

134.6 129.41
96.6 107.5

84.8
48.6

22.6 35.728.5 29.3

0
50

100
150

200
250
300
350
400

Q01 Q04 Q09

m
se

c -
pl

an
 e

xe
cu

tio
n

Scale Factor 2

Contact us:
Natan Peterfreund natan.peterfreund@huawei.com
Eyal Rozenberg eyal.rozenberg@huawei.com

Adnan Agbaria | David Minor | Natan Peterfreund | Roman Talyansky | Ofer Rosenberg | Eyal Rozenberg
Heterogeneous Computing Group, Shannon Lab, Huawei Research

0.97

0.83

0.35

0.26

0.05

RHS-Unique 
Join

Select Indices 
Sorted

Elementwise 
Compare

Gather

Select

0.0 0.2 0.4 0.6 0.8 1.0 1.2total msec

TPC-H Q4

2.4

1.1

0.8

0.3

0.1

Gather

Foreign Key 
Join

Substring 
Search

Select Indices

Group-Indexed 
Aggregate Sum

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8total msec

TPC-H Q9

7.80

3.31

1.80

1.62

1.40

Group-Indexed 
Aggregate Sum

Histogram

Gather

Select Indices

(ari thmetic kernels )

0.0 2.0 4.0 6.0 8.0 10.0total msec

TPC-H Q1

gm.data

T.c2 T.c1

Group Materialization

Per-Group Sum

gm.groupby_value gias.data

Group-Indexed 
Aggregate Sum

gias.group_indices

T.c2 T.c1

Select

Determine Group 
Presence

d.in

SelectIndices

Gather

Determine Group 
Presence s.indices

d.in

Gather

s.indicesd.ins.indices

equivalent to j.out_rhs

Gather

T2.c - Primary Key

ScatterIndices
j.in_lhs 
holds foreign 
keys  into T2.c

j.out_rhs

RHS Unique Join 

j.in_lhs 
holds foreign 
keys  into T2.c

j.out_lhs
(trivial)

T2.c - Primary Key

10.7
13.1

11.5

11.8 14.9
17.7

14.1

2.7

5.9

3.4

3.2 7.5

7.7

5.1

0.9

1.1

1.0

2.4 2.7

2.6

2.5

24.9
47.3

91.1

18.1 27.4

54.6

102.2

0.9 1.3 1.9 1.3 1.1 1.3 1.9

SF 1 SF 2 SF 4 SF 1 SF 2 SF 4 SF 8

1 GPU 2 GPUs

TPC-H Q1 in different scale factors 

Other

CPU Compute

GPU Overall

Select Devices & Partition

Compile & Optimize Graph

MonetDB Prepares its plan

28 15.85

16.124
9.922

7.78

6.537

3.118

44.55 1.101

3.935

32.57 27.14

1

1 1

250.6

50.07

0.25 0.15

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MonetDB AXE CPU AXE 1 GPU AXE 2
GPUs

TPC-H Q9, Scale Factor 2

Multi-GPU
 Memory Transfer

Overlapping Compute 
& Memory Transfer

Simultaneous
Processing:

Multi-Core CPU
& Multiple GPUs

GPU Kernel Task 
Parallelism

Multi-
GPU

contact Name 

Eyal Rozenberg: eyal.rozenberg@huawei.com
Poster 

P5300

Category: Developer - Performance Optimization - DO06


