
Problem
Datasets in molecular biology have number of features reaching several
thousands (gene expression, proteomics) and even millions (SNPs).
Identification of the features that truly contribute to the studied
phenomena is a key step, necessary for their understanding.
The number of features is so large that only univariate significance tests for each variable are routinely
performed, hence any effects that depend on interactions of several features may be overlooked.

Solution
We have developed very fast CUDA based engine that allows for
exhaustive multidimensional searches of all combinations of features
that may lead to statistically significant relationships between k-tuple of descriptive variables and a decision
variable, with k = {2,3,4,5}. We present the service based on this engine, that aims at performing feature
selection that takes into account joint influence of subsets features in the studied phenomena for data sets
described with very large number of features. The first module is devoted to search of epistatic interactions
due to structural variations in genomes, nevertheless, the algorithm is easily extensible to more general
problems and this work is under development.

Values of the descriptive variables are randomly discretised into
m={2,3,4} intervals. Hence for each k-tuple of variables objects are
assigned to voxels in k-dimensional subspace spanned on these
variables. The number of objects with each decision class is computed
for each voxel and the statistical test is performed to check whether
such division leads to significant gain of information on the decision.
The procedure is performed multiple times for each k-tuple of variables using different discretisations of
variables. The GPU engine is used to count the number of objects of both classes in each voxel for each k-
tuple of variables and then compute the value of the appropriate statistics.

Figure 1. Discretisation of the configuration space for two variables. The statistical tests are performed on
GPU using the engine developed for computing multidimensional GWAS analyses.
!
Computations are performed in two stages. In the first stage the
number of objects of each class is computed for each voxel.
In this stage the counters for each voxel can be computed separately for each class, what is facilitated by
sorting objects by decision variable. Discretised value of each variable is coded as bit-vector. For example
when variable is discretised to three values; the corresponding representation is
0 -> {1,0,0}, 1 -> {0,1,0}, 2 -> {0,0,1} , see Figure 1.
For each object the location of the particular voxel is checked using AND operator on corresponding bit-
vectors and counters for all voxels are updated. The result is non-zero for precisely one voxel. One should
note that it takes mk operations. It may seem wasteful at first, however, thanks to this representation two
optimisations are possible:
- bits corresponding to each value are stored in bit-vectors, each bit-vector corresponds to all objects,

hence one can use bit-wise operation and perform the operations for 32 objects in parallel,
- bit vectors are very compact representation, only two bits per object are required.
Moreover, not all counters need to be computed. One can precompute the number of objects
corresponding to each discrete value of each variable, and then mk-1 counters need to be computed
directly from data, remaining values can be computed using counters and known values for single
variables.

Once all counters are computed for both classes the statistics are
computed.
CUDA Implementation
The engine is currently implemented for 2-dimensional problems with 2, 3 and 4 values
per variable. Each CUDA thread calculates counters and statistics for one pair of
features, counters are stored in registers.

Figure 2. Scaling of the task with increasing number of variables (left) and increasing number of objects
(right). Inset on the right panel displays the same data in logarithmic scale. Lines of linear fit to data are
displayed in both panels. In the left panel is r2=1, in the right panel r2=0.9999. !
Default size of CUDA block is 16x16 threads. In general case for one iteration over
objects (i.e. 32 consecutive objects stored as bit vectors) we need to read 2*(16+16)
integers from global memory, let us notice that for example the threads with the same
value of threadIdx.x require the same bit vector corresponding to a specific feature.
Therefore to reuse bit vectors and reduce the required bandwidth to global memory
we are using shared memory as a block-level cache.

Performance
In the case of 2-dimensional problem with three values per variable, corresponding to the analysis of epistasis
in SNP data, computing counters and computation of statistics takes roughly the same time when number of
objects in the dataset is about 1000.
The scaling is nearly perfectly quadratic with increasing number of variables and linear with the increasing
number of objects, see Figure 2. For 1024 objects and 204 800 variables total computation time takes 15.5
seconds on GeForce Titan Black, when single statistics is computed. Computations for 1024 objects and 3 276
800 take 4018 s.

The GPU engine performance is 1.35 *109 model evaluations per sec.
With such performance it is feasible to compute 2-dimensional GWAS analysis for 10 mln SNPs on a single
GPU card. Current implementation is capable of using multiple GPUs on the same workstation, the GPUs
need not to be identical. Tests have been performed for all combinations of GeForce 480 GTX, Tesla K20 and
GeForce Titan Black.

Web Server (FeatureSelector.icm.edu.pl)
Server is available (starting from March 1 2015) for analysis of Genome Wide Associated Studies, subsequent
modules will be added at later times. The web server is developed using GO language. It serves needs of two
classes of users. Occasional users who can submit their data without registration, are limited to datasets not
larger than 2 GB and the results are retained for 48 hours. The space available for registered users is limited
to 20GB and is permanent. The server consists two layers - web server and and computational engines. The
Web server is responsible for interactions with users, storage and transfers of data, and managing
computations. Computations are performed on remote servers.

Figure 3. Schematic representation of the Feature Selection Server.

	
 Feature	
 selection	
 @GPU	

	
 Witold	
 R.	
 Rudnicki*,	
 Szymon	
 Migacz,	
 Andrzej	
 Sułecki,	
 Łukasz	
 Grad,	
 	

	
 Magdalena	
 Zaremba,	
 Paweł	
 Tabaszewski,	
 Antoni	
 Rościszewski	

	
 Interdisciplinary	
 Centre	
 for	
 Mathematical	
 and	
 Computational	
 Modelling,	
 University	
 of	
 Warsaw	

Pawińskiego	
 5a,	
 02-­‐106	
 Warsaw	
 Poland	

*Corresponding	
 author,	
 e-­‐mail:	
 W.Rudnicki@icm.edu.pl	

Pseudocode (2d case, scalar version)
//Build bit vector representations for all variables	
BitVec<-BuildVectorRepresentations()	
for i = 1 to Nvar	
	 for j = i+1 to Nvar 	
	 	 //Compute counters for 0s	
	 	 for k1 = 1 to K-1	for k2 = 1 to K-1 Counter_0[k1,k2] = 0;	
	 	 for n = 1 to Nobj_0/32 // 32 objects stored in single int, 	
	 	 	 for k1 = 1 to K-1	
	 	 	 	 for k2 = 1 to K-1	
	 	 	 	 	 Counter_0[k1,k2] += PopCount(BitVec[n,k1] & BitVec[n,k2])	
	 	 //Compute counters for 1s	
	 	 for k1 = 1 to K-1	for k2 = 1 to K-1 Counter_1[k1,k2] = 0;	
	 	 for n = Nobj_0/32 to Nobj_1/32 	
 // We assume multiply of 32 objects in each class 	
	 	 	 for k1 = 1 to K-1	
	 	 	 	 for k2 = 1 to K-1	
	 	 	 	 	 Counter_1[k1,k2] += PopCount(BitVec[n,k1] & BitVec[n,k2])	
	 	 	 for k1 = 1 to K-1 	
	 	 	 	 locVar1_val0 = locVar1_val1 = locVar2_val0 = locVar2_val1 = 0	
	 	 	 	 for k2 = 1 to K-1	
	 	 	 	 	 locVar1_val0 += Counter_0[k1,k2] 	 	 	 	
	 	 	 	 	 locVar1_val1 += Counter_1[k1,k2] 	 	 	 	
	 	 	 	 	 locVar2_val0 += Counter_0[k2,k1] 	 	 	 	
	 	 	 	 	 locVar2_val1 += Counter_1[k2,k1]	
	 	 	 	 Counter_0[k1,K] = SumVar0[i,k1]-locVar1_val0	
	 	 	 	 Counter_1[k1,K] = SumVar1[i,k1]-locVar1_val1	
	 	 	 	 Counter_0[K,k1] = SumVar0[j,k1]-locVar2_val0	
	 	 	 	 Counter_1[K,k1] = SumVar1[j,k1]-locVar2_val1	
	 	 	 locVar1_val0 = locVar1_val1 = 0	
	 	 	 for k1 = 1 to K-1	
	 	 	 	 locVar1_val0 += Counter_0[k1,K] 		 	 	
	 	 	 	 locVar1_val1 += Counter_1[k1,K]	
	 	 	 Counter_0[K,K] = SumVar0[i,K]-locVar1_val0	
	 	 	 Counter_1[K,K] = SumVar1[i,K]-locVar1_val1	
		 ComputeStatistics()

Pseudocode for CUDA version
unsigned counter[2][2] = {0};	
for n = 0 to Nobj_0/32	
 if (n % 4 == 0) 	
 __syncthreads()	
 prefetch bitVectors to shared memory	
 __syncthreads()	
 for k1 = 1 to K-1	
 for k2 = 1 to K-1	
 counter[k1,k2] += PopCount(shBitVec[n%4, k1, threadIdx.x] &
shBitVec[n%4, k2, threadIdx.y]) 	
ReverseBits() // revers bits in each element of "counter" array	
for n = 0 to Nobj_1/32	
 if (n % 4 == 0) 	
 __syncthreads()	
 prefetch bitVectors to shared memory	
 __syncthreads()	
 for k1 = 1 to K-1	
 for k2 = 1 to K-1	
 counter[k1,k2] += PopCount(shBitVec[n%4, k1, threadIdx.x] &
shBitVec[n%4, k2, threadIdx.y]) 	
RecoverOriginalCounters()	
// recover original values in counter[2][2] array 	
// and copy to counter_0[2][2] and counter_1[2][2] arrays	
PopulateFullCounterArray()	
//Populate full counter_0[3][3] and counter_1[3][3] arrays	
CalculateStatistics()

contact Name

Witold Rudnicki: W.Rudnicki@icm.edu.pl
Poster

P5301

Category: Machine Learning & Deep Learning - ML06

