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Abstract Methods Results and Conclusions
In this work we introduce a novel Diffeomorphic Multi-level Transform Diffeormorphic Multi-level Transform Composite (DMTC): Benefits of DMTC and Tiling:
Composite method (DMTC) for accelerated computation of nonrigid mass- _ o _ _ _ _ _ _ _ _ _
preserving registration of lung images with large deformation on Graphics Constraints create conflicting needs — capturing large deformations requires large « Pre-compute B-Spline weights LUT for one tile one time per registration level.
Processing Units (GPUs). The probosed method dramatically reduces control node spacing, local deformations require small spacing. A Multi-level method . ) . ) . e
computatigonal tinge whgn coml:;aer to its single- and muItthhreaded CPU is employed to satisfy both. A composite transform defines the final transformation. Egﬁtgionr;Eﬂt?eietvter;ags\gp:\bfz LC;F VCVC;Sr’ICD;gdtg?rsntsgradlent at initialization by
counterparts, with the speedup factor ranging from 6 to 112. The significance l |
of this work is two-fold. First, the DMTC achieves computation and memory Previously Reported DMTC *  Minimizes CPU-GPU communication, eliminates redundant computation, reduces
efficiencies on GPUs, and together with the mass-preserving measure . memory storage needs to fit GPU architecture limitations.
improves the accuracy of registration. Second, the improved computational Composite Transtorm T, | T, =T;oT; 40 °T T¢c=TgoTqooT; . Tiling allows use of fast shared memory and avoids slower global memory
efficiency is essential in analyzing data for population-based studies and '
translational science. This GPU implementation can be easily adapted for use Warping Image w W=T;_ 10T w=TgoTqooT; 4
with other non-mass-preserving similarity measures. Version Total Time (min) Total Cost and Cost-gradient Time (min)
T, (in terms of w) Tc[x, @] = Ti[w(x),¢] | Tc[x,¢] = o(Ti[x, $]) 20X GPU - .
Composite Transform Example (2x2 voxels): 12T CPU 12.9 11.7
Level 0 Transform Level 1 Transform Step 1 Level 1 Transform Step 2 6T CPU 23.7 22.6

: 3 : : : Table 1 Total times for 8 level image pyramid (323 to 2563 voxels). Intel Xeon E5-2620
Cubic B spllne Transformation Model: 6-core CPU and Nvidia Tesla K20X GPU were used.

Registration Model E"",' ;:r“"f,-f E_“]_:r";;,: E_“?:r“} 1T CPU 112.5 111.3
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o Voxel center position | O\A | : | | : $ 100 T K20X Vs O
e Final position after registration :_ _: | :_ _: l & K20Xvs 127
Deformed position by T, G G : G G : DMTC E
7' T, displacement vector I ! : I | : a
/' Warping displacement vector : : | : : | 1.0
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\ T, final displacement vector e r A | e X | Registration Level
Human lung at FRC Human lung at TLC * Deformed position by Ty :
] _ o _ _ Figure 5 Speedup factors per level, speedup = t,/ty, t; > t,
Figure 1 Transformation from TLC (moving image) to FRC (fixed image) Figure 3 Top row: Typical composite transform first applies warping image displacement to original
_ _ position (step 1). The displaced position serves as input to the current transformation (step 2). Level K20X GPU 12T CPU 6T CPU 1T CPU
Grid Alignment: Bottom row: The DMTC takes the original position as input to the current transform (step 1). The 1 0,013 0.03 0.05 091
_ _ _ _ _ displaced position is then input to the (interpolated) warping image (step 2). Regular voxel spacing ' ' ' '
B-Spline weight values repeat across each tile created by grid alignment, is preserved. 2 0.005 0.03 0.05 0.24
allowing pre-computation of weights for single tile and storage in lookup table : : 3 0.019 0.18 0.32 1.70
(LUT) GPU Implementation using CUDA.:
- _ _ o 4 0.018 0.18 0.33 1.70
. — A — o TV o Tile 0 Tile 1 « Tiles assigned to blocks for parallelization. 5 0.13 133 749 13.5]
' ' ' ; X oxel Image Grl | 0 o : :
: ; ; i ; J I I « Each 3D tile is partitioned into sub-tiles of 4x4x4 6 0.15 1.34 2.50 13.52
¢ b - O > x 5 Control Node Grid voxels, each voxel assigned to one of 64 threads. 7 103 10.29 19.78 106.99
: . nies _+ Sum reduction used to compute partial sums of sub- 8 0.95 10.26 15.72 106.54
----- -'? = O Legend: tile’s contribution to cost and cost-gradient, partial Table 2 SSTVD time per iteration by registration level for GPU and CPU implementations
- .. Small squares = voxels . SIS I8 U ElEl S0red 1 SNRres. mEmery;
_____ s _ | | o | | |
. l | | Grey circles = control nodes « Final contribution of a tile to the cost-gradients of its References
T Lo {J) _____ {E) _____ i Bold squares = tiles == o= surrounding control nodes stored in bin data _ _ _ . _ _ ———
L _i__:_ o structure, consisting of 64 slots per node in 3D. Sum Yin, Youbing, Eric A. Hoffman, and Ching-Long Lin. Mass preserving nonrigid registration of CT lung

images using cubic B-spline. Medical physics 36.9 (2009): 4213-4222.

Figure 2 2D example of grid alignment - reduction performed on bins to attain final values.

= Shackleford, J. A., Kandasamy, N., & Sharp, G. C. (2010). On developing B-spline registration algorithms
for multi-core processors. Physics in Medicine and Biology, 55(21), 6329.
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5 ; — Fi.gure _4(3) 2_D tiling example Figure 4(b) 2D example §h0V\{in9 Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid
C(P) = Xreq Vr (%) [i f (x) — Jr(x, Qb)im (T|x, ¢])] I (x) = ) =HUqir with 4 tiles assigned to threads 16 control nodes surrounding tile 0. registration using free-form deformations: application to breast MR images. Medical Imaging, IEEE
x HUtissue—HUgir and partitioned into sub-tiles of Each control node assigned a bin Transactions on, 18(8), 712-721.
#x4=16 voxels, each of which consisting of 16 slots, each slot Choi, Y., & Lee, S. (2000). Injectivity conditions of 2D and 3D uniform cubic B-spline functions. Graphical
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