
Abstract
Making use of massively parallel computing with CUDA, we propose a new

framework which provides a method for improving cryptographic SAT solver.
With known plaintexts/ciphertexts, cryptographic SAT solvers have been trying
to find the encryption key by solving the corresponding SAT problem. Since most
ciphers can be expressed as SAT problems with more than 10,000 variables, it is
still infeasible to find a solution even with the reduced-round ciphers in general.

In our framework, key variables are managed as pivot variables. During the
solving procedure, if the number of undetermined key variables is small enough,
the kernel function on GPU is invoked to perform the exhaustive search for the
rest of the keys. Even when the kernel cannot reach the solution, it feedbacks a
learned clause with useful information accelerating SAT solver in the host PC.

A Framework for Accelerating Cryptographic SAT Solver with CUDA
Taeill Yoo1, Yongjin Yeom1, Daewan Han2

1Department of Financial Information Security, Kookmin University, South Korea
2The Attached Institute of ETRI, South Korea

Target Algorithm(PRINTCipher-48)

<Chip in the RFID Card> <IC-Printed Circuit>

<Round Function of PRINTCipher-48>

PRINTCipher-48 is an encryption algorithm to protect
important data in restricted computing environment
such as RFID cards. It has been designed to assure
integrity and authentication with minimum resources.

Specification
block size : 48
key size : 80
rounds : 48
- it uses identical key
in each rounds
without key schedule.

Structure of Round Function
Add RoundKey (sk1 : 48 bits)
Linear Diffusion
Combine Round Constant
Key-dependent Permutation
(sk2 : 32bits)
S-Box Layer

References
[1] L. Knudsen, G. Leander, A. Poschmann, M.J.B.Robshaw, “PRINTCIPHER : A Block Cipher for IC-Printing”, LNCS,

Vol 6225, pp.16-32, CHES 2010
[2] S. Bulygin, J. Buchmann, “Algebraic Cryptanalysis of the Round-Reduced and Side Channel Analysis of the Full

PRINTCipher-48”, LNCS Vol. 7092, pp.54-75, 2011

Conclusion
 We propose a hybrid SAT solver based on miniSAT with CUDA.
 In our framework, GPU takes part in the solving procedure not only by

executing brute-force key search but also by providing learned information
to the main solver in the host PC.
 We improved time performance of SAT solver from infeasible range to

feasible range for PRINTCipher-48.
 Further work will be considered including optimization of the performance,

application to other ciphers, combining with other cryptanalytic attacks, etc.

http://www.news.gatech.edu/2013/11/05/georgia-tech-develops-inkjet-based-circuits-fraction-time-and-cost
http://www.smartapps.tn/rfid2.htm

Acknowledgements
1. This research was supported by Next-Generation Information Computing Development Program through

the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning
(No. NRF-2014M3C4A7030648)

2. This research was partially supported by BK21PLUS through the National Research Foundation of Korea(NRF)
funded by the Ministry of Education, Science and Technology (Grant No. 31Z20130012918)

Main Idea
The main strategy is to extract a key search tree from the main tree.
 The key search tree contains only key variables
→ the solver handles key variables more importantly than others.
→ GPU, with parallel computing power, participates

as a high speed key search tool.
→ GPU also generates useful information.

Transfer Current Information to GPU

Executing
Parallel key search

T
T
T

T
T
T

T
T
T

T
T
T

T
T
T

T
T
T

T
T
T

T
T
T

T
T
T1

80

N

40

CU
DA

T

② Extract key variables

<Main search tree>

𝑘𝑘𝑘𝑘1

𝑘𝑘𝑘𝑘2 𝑘𝑘𝑘𝑘2

𝑘𝑘𝑘𝑘3 𝑘𝑘𝑘𝑘3

<Key search tree>

key variable
general variable
brute force search

Host PC part (Main Solver)
GPU part (Exhaustive key search)

[𝑘𝑘𝑘𝑘1 𝑘𝑘𝑘𝑘2 𝑘𝑘𝑘𝑘3]

④ Generate
learned clause

[𝑥𝑥𝑥𝑥21 𝑥𝑥𝑥𝑥17 𝑥𝑥𝑥𝑥23 𝑥𝑥𝑥𝑥73]

[𝑥𝑥𝑥𝑥89 𝑥𝑥𝑥𝑥137 𝑥𝑥𝑥𝑥213 𝑥𝑥𝑥𝑥15]

[𝑥𝑥𝑥𝑥89 𝑥𝑥𝑥𝑥137 𝑥𝑥𝑥𝑥213 𝑥𝑥𝑥𝑥15]

[𝑥𝑥𝑥𝑥61 𝑥𝑥𝑥𝑥71 𝑥𝑥𝑥𝑥53]

[𝑥𝑥𝑥𝑥12 𝑥𝑥𝑥𝑥27 𝑥𝑥𝑥𝑥91 𝑥𝑥𝑥𝑥62 𝑥𝑥𝑥𝑥112]

< CNF(SAT problem) >

[𝑘𝑘𝑘𝑘1 𝑘𝑘𝑘𝑘2 𝑘𝑘𝑘𝑘3]

⑦ Continue
the main solver
with learned
information

⑤ Add
learned clause

⑥ Backtrack

conflict

(example)
infeasible problems size

AES-128
variables : 57,945
clauses : 796,147
search space : 257,945

PRINTCipher-48
variables : 16,945
clauses : 109,681
search space : 216,945

Initially
Guessed Keys

Key search
by Host PC

Key search
by GPU(CUDA)

Key Gauge

③ Key search
using CUDA

① Start
SAT solver

SAT Problem:
 Is a problem, for a given Boolean expression in CNF(Conjunctive Normal

Form), finding a solution satisfying the CNF (to be TRUE) or proving no
solutions exist.

SAT Solver:
 Is an algorithm which answers a solution to the SAT problem.
 If there exist no solutions, the solver has to prove it.

Cryptographic SAT solver

Literal

CNF = 𝑥𝑥𝑥𝑥1 ∨ 𝑥𝑥𝑥𝑥2 ∧ 𝑥𝑥𝑥𝑥3 ∨ 𝑥𝑥𝑥𝑥4 ∧ 𝑥𝑥𝑥𝑥5 ∨ 𝑥𝑥𝑥𝑥6 ∧ (𝑥𝑥𝑥𝑥6 ∨ 𝑥𝑥𝑥𝑥5 ∨ 𝑥𝑥𝑥𝑥2)

Clause 𝑥𝑥𝑥𝑥1

𝑥𝑥𝑥𝑥2 𝑥𝑥𝑥𝑥2

𝑥𝑥𝑥𝑥4 𝑥𝑥𝑥𝑥4

𝑥𝑥𝑥𝑥3 𝑥𝑥𝑥𝑥3

𝑥𝑥𝑥𝑥4 𝑥𝑥𝑥𝑥4

𝑥𝑥𝑥𝑥5 𝑥𝑥𝑥𝑥5

𝑥𝑥𝑥𝑥6 𝑥𝑥𝑥𝑥6 𝑥𝑥𝑥𝑥6

Conflict

Backtrack

< SAT solver>
Efficient exhaustive search algorithm

with backtracking & learning by conflicting

SAT solver has been considered as a
tool for cryptanalysis. For a given
cipher with unknown encryption key,
SAT solver tries to find the key by
performing known plaintext attack as
following steps:

(𝑥𝑥𝑥𝑥1 ∨ 𝑥𝑥𝑥𝑥3 ∨ 𝑥𝑥𝑥𝑥5)
Learned Clause

Attached
learned clause

 Step 1 : Express the target cipher as a system of algebraic
equations

 Step 2 : Transform this into CNF(Conjunctive Normal Form)

 Step 3 : Solving SAT problem with the CNF using SAT solver

Algebraic
Equation

CNF

SAT solver
(miniSAT)

Target
Block Cipher

∧ (𝑥𝑥𝑥𝑥1 ∨ 𝑥𝑥𝑥𝑥3 ∨ 𝑥𝑥𝑥𝑥5)

※ AES-128 : 57,945 variables, 796,147 clauses.
※ PRINTCipher-48 : 16,945 variables, 109,681 clauses.

(Example) CNF with 6 variables and 4 clauses

(Cryptographic SAT solver)

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
0

300

600

900

1200

1500

1800

the number of rounds

tim
e/

se
c

SAT solver : GPU = 12 : 16
SAT solver : GPU = 8 : 20
SAT solver : GPU = 4: 24
only SAT solver

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

the number of rounds

tim
e(

/s
ec

)

SAT solver : GPU = 16 : 16
SAT solver : GPU = 12 : 20
SAT solver : GPU = 8 : 24
only SAT solver

Experiments for PRINTCipher-48
In order to measure performance of this framework, we choose

PRINTCipher-48 as an encryption algorithm because PRINTCipher-48 can be
expressed simply in the aspect of algebra.
There has been several analysis for PRINTCipher-48 using SAT solver. Most
successful results are 8 round and 6 round analysis for 15 bit and 35 bit key
guessing, respectively.

※ Experimental Setup : Intel i7-4770K 3.5Ghz, 16GB RAM, GTX 780

Test Group
In the key search tree, we measured influence of CUDA in the search

performance by dividing portion of SAT solver with CUDA. We experimented
that unknown keys are 28 bits and 32 bits, and also divided each cases with
three groups. In the experiments, CUDA interplays with miniSAT for 16, 20, 24
bits exhaustive search.

In the experiments, we obtained following results for PRINTCipher-48.
 We improved time performance from infeasible to feasible.
 Hybrid SAT solver carried out efficient analysis for full(48) round.

Search
Key Bits

SAT solver
Key Bits

CUDA
Key Bits

Group A
(28)

12 16

8 20

4 24

Group B
(32)

16 16

12 20

8 24

Group A Group B

<Experimental Data Set>

infeasible infeasible

infeasible
to

feasible

infeasible
to

feasible

Hybrid SAT solver Algorithm
Start SAT solver

solving SAT problem in in the Host

reach CUDA call condition

Call CUDA Kernel Function
(Exhaustive Search)

If the solution is found,
return a solution

If there are no solutions,
backtrack and Generate

learned clause

learning clause scheme

contact name

Taeill Yoo: taeillyoo@kookmin.ac.kr
Poster

P5306

category: DeveloPer - AlgoriThms - DA13

