
Fighting malware with GPUs in real time
Every day several hundred thousand previously unseen executables appear in the machines of our users. But most 
of them are only variants of already known files. To classify such variants quickly and reliably we need to effectively 
leverage their similarity with the known files. This helps our analysts to focus on the truly new threats.
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Visit Peter’s talk (S5612) for more details about Medusa.

System Setup
There are four main parts in our system. First there are few hundred million user machines, which 
serve as a sensor network for our system, while being protected from emergent threats in return. Next 
there is a huge database containing user counts for all the files ever tested by Avast called FileRep. Then 
there is an internal system in Avast called Scavenger. It keeps track of all the threat samples that ever 
entered the company systems and of all the work that the virus analysts did to classify and detect those 
threats. Last there is the GPU powered system presented in this poster, that leverages all the informa-
tion to automatically classify as much samples as possible. We call it Medusa.

Synchronization
Medusa has to be kept up to date with all the changes that happen in Scavenger – new files are arriv-
ing, files are classified as malware or benign or removed from the sets which are relevant for classifica-
tion. A durable message queue in RabbitMQ is used to ensure that no updates are lost even during the 
Medusa server updates and maintenance. Additionally the consistency between Medusa and Scavenger 
is checked with complete dumps of object identifiers on schedule.

Real time deployment
One instance of Medusa is currently deployed as a real time classifier, which is called whenever any 
single Avast Antivirus has trouble deciding if a newly found file could be malicious or not (see the 
Customer protection part). Given the 200 million users of Avast there is a potential for a huge load. To 
reduce the potential load we implemented a caching proxy between the clients and the Medusa cluster. 
A file can be classified differently, as new information arrives from Scavenger, so the TTL of the cached 
decisions is set to few minutes. Despite this, the cache hits in almost 40 % of the requests.

Cluster setup
Every Medusa node in our deployment uses two or four Nvidia GPUs. A Medusa cluster has one mas-
ter node that is aware of all the sets and several slave nodes, which contain some parts of the sets.
The classification needs a lot of clean and malware samples. The Evo-gen generator uses also a set with 
unclassified samples. Because of a big difference in usage patterns we keep the different sets separately 
(think separate database tables). Clean set samples are the most important because of the inherently 
high costs of a false positive. Thus the clean set takes most of the space and is proportionally the slow-
est to scan. To increase the throughput we keep the clean set mirrored. The sets with recent malware 
and unclassified samples take up only a fraction of the space needed for clean set (roughly 1/10).
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Machine Learning
Some form of machine learning is necessary to effectively use all the information collected over the 
years in our internal systems. We chose instance based learning because it has a lot of desired proper-
ties: • re-learning the model is only a matter of adding or removing a sample to or from the correct set 
• it is simple to find the reasons for particular decisions • it is easy to fine tune the false positive rate 
• the decision boundary is not expected to be very smooth for this kind of problem.

Custom distance function
Each sample is represented by a constant-sized feature vector consisting of ~100 attributes. We keep 
the exact composition of the feature vector secret. The obvious candidates like section table data in the 
Portable Executable format are also included, for example. In general there are static and dynamic fea-
tures, categorized as offsets, sizes, checksums, factors, bit flags and generic numbers.
In our proof-of-concept implementation we started with a simple Hamming distance. It worked sur-
prisingly well, but there was enough room for improvement. Taking into account the nature of the at-
tributes we ended up with several distance operators and a weighting scheme, that equalizes the impor-
tance of the attributes. The following table contains a sample of operators we’re using.

Distance operator Field types Description

EQUAL_RET32 CHECKSUM, VALUE return 32 when values are equal

HAM STRING Hamming distance

HAM_MUL32 BITFIELD Hamming distance multiplied by 32 - each flag change 
is as important as maximal change of one feature

LOG LENGTH, OFFSET base 2 logarithm of a difference

ORDER LENGTH, OFFSET, VALUE difference of base 2 logarithms

RETZ all ignore the feature, return 0 for all values

kNN classifier
The most common approach for instance 
based learning is the nearest neighbour 
classification. To fine tune our classi-
fier we built a tool that displays near-
est neighbours of a given query sample 
(called Pythia). It uses a dimensionality 
reduction method (NMDS) to display the 
neighbours in 2D space and also displays 
a lot of additional metadata for the se-
lected samples. This information can be 
used by a human to decide whether it is 
plausible to distinguish between malware 
and clean neighbours in current case.
The goal was to create a fully autono-
mous system – that means high precision at the cost of lower recall. After some experimenting we 
added few thresholds: for minimal allowed distance to clean files, maximal allowed distance to malware 
files and a weighting term that shifts the balance between clean and malware sets.

Real world data
The redundancy in real world data is quite significant. Our internal systems handle around 250,000 
new PE files every day. Out of those, 150,000 can be directly assigned to one of 20,000 clusters using 
very strict clustering criteria (low threshold distance and complete linkage). Each cluster can then be 
classified as a whole. That means 130,000 less decisions to make. And the total number of clusters does 
not grow by 20,000 every day, the clusters overlap between days.
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Customer Protection
There are several methods to transfer the classification to our customers. Each of them has its own pros 
and cons. The following table summarizes the main differences, the pros are in green, cons are in red.

Method How many users Delay in classification How many file versions

Real time classification single user no delay one

FileRepMalware all users seconds one

Evo-gen all users minutes many

Real time classification
Avast Antivirus checks every executable before it’s executed in the customer’s machine. When no sig-
nature from current threat database matches the file, the FileRep service is queried. If the returned user 
count (prevalence) is anomalously low, the executable ends up in Avast Sandbox. If the executable trace 
log does not match any known threat, the real time classifier is invoked. 
Avast Antivirus extracts the feature vector, submits it to a cloud based service and waits for the re-
sponse. Most of the low prevalence files are benign. Out of ~250,000 requests daily about 4,000 are clas-
sified as malicious.

FileRepMalware
Once a file is classified as malicious and our internal systems check that it is safe to detect this particu-
lar file worldwide, a simple flag is set in the FileRep service. Every Avast client that encounters that par-
ticular file instantly blocks it and reports it as FileRepMalware.

Evo-gen
The good thing about (the old) string based signatures is that when done right, they generalize to many  
variants of the threat. But string based signatures require a skilled analyst and time. We needed some-
thing that generalizes like string signatures, but does not need the human skill and time. 
Enter Evo-gen – once we’ve got a set of very similar feature vectors thanks to the distance function, 
we can start to pick features that make them similar and build a rule set from those features. It is a bit 
similar to rule set generation in decision trees, but the objectives are different. To boost the generaliza-
tion we can try to pick as few rules as possible, while keeping hits in clean set at zero. But there is a lot 
of ways to pick 20 rules from 100 possible ones – 5.36×1020 (536 billion billion) numerically. We’re cur-
rently taming the combinatorial explosion with a stochastic approach (gives better results than greedy 
approaches). This is where the speed of the GPUs is very important again.
While trying to understand how the Evo-gen rule sets (blue) affect the signature ‘ecosys-
tem’, we produced the following visualization. Each blob represents a different rule set or 
signature, the size of the blob is proportional to the number of detected variants.
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