
• The proposed framework is designed for stencil
applications with explicit time integration
running on regular structured grids.

• The framework is intended to execute user
programs on NVIDIA's GPUs and CPU.

• The framework is written in the C++ language
and CUDA and can be used in the user code
developed in the C++ language.

--> Improving portability of both
framework and user code and
cooperation with the existing codes.

• The framework allows us to write multi-GPU
code without considering handling multiple
GPUs on a single process.

• To perform stencil computations on grids, the
programmer only defines C++ functions that
update a grid point, which is applied to entire
grids by the framework.

The weather prediction code demands large computational performance to achieve fast and high-resolution simulations. Skillful programming techniques are required for obtaining good
parallel efficiency on GPU supercomputers. Our framework-based weather prediction code ASUCA has achieved good scalability with hiding complicated implementation and optimizations
required for distributed GPUs, contributing to increasing the maintainability; ASUCA is a next-generation high-resolution meso-scale atmospheric model being developed by the Japan
Meteorological Agency. Our framework automatically translates user-written stencil functions that update grid points and generates both GPU and CPU codes. User-written codes are parallelized
by MPI with intra-node GPU peer-to-peer direct access. These codes can easily utilize optimizations such as overlapping technique to hide communication overhead by computation.

Stencil Computation

GPU-GPU communication

[1] T. Shimokawabe, T. Aoki and N. Onodera "High-productivity
Framework on GPU-rich Supercomputers for Operational
Weather Prediction Code ASUCA," in Proceedings of the 2014
ACM/IEEE conference on Supercomputing (SC'14) , New Orleans,
LA, USA, Nov 2014.

Decomposition
Whole domain Decomposed subdomains

GPU GPU GPU

Boundary exchange

OpenMP
thread

GPU

OpenMP
thread

GPU

OpenMP
thread

GPU

MPI process

OpenMP
thread

GPU

OpenMP
thread

GPU

OpenMP
thread

GPU

MPI process

OpenMP
thread

GPU

OpenMP
thread

GPU

OpenMP
thread

GPU

MPI process

GPU

CPU CPU

GPU

(1)

(2)

(3)

MPI process MPI process

GPU GPU

(1)

OpenMP thread OpenMP thread

Structure of Framework

Stencil Computation on Grids

GPU-GPU communication

• The framework supports multiple GPU computing.
• Optimized parallelization:
 Inter-node parallelization: MPI library
 Intra-node parallelization: OpenMP

This framework parallelizes not parts of GPU
computation in the user code but the entire user
code from beginning to end including memory
allocation and time integration loop. Figure 2: Multi-GPU computing of

mesh-based computation.

Figure 3: Multi-GPU computing by using both MPI and OpenMP.

In order to execute stencil computation on grids, the programmer must describe
functions that update a grid point. The framework provides C++ classes that apply
user-written functions to grids. The user-written functions are executed on grids
sequentially for CPU and in parallel for GPU using CUDA's global kernel functions.

Intra-node GPU-GPU communication
• Multi-GPU calculations within a same node are performed by an MPI process with

several OpenMP threads, each of which is assigned to a single GPU.
• This communication is performed by just a copy between the memories of two different

GPUs using cudaMemcpy.
• GPUDirect peer-to-peer access is used when it is supported by two GPUs.
Inter-node GPU-GPU communication
• Three steps of boundary data exchange from GPU to GPU:
 (1) Data transfer from GPU to CPU using the CUDA runtime library
 (2) Data exchange between nodes with the MPI library
 (3) Data transfer back from CPU to GPU with the CUDA runtime library

• Total 4224 NVIDIA Tesla K20X GPUs
• Each node of TSUBAME 2.5
 • 3 Tesla K20X GPUs attached to the

 PCI Express bus 2.0 × 16 (8 GB/s)
 • 2 sockets of the Intel CPU Xeon

 X5670(Westmere-EP) 2.93 GHz 6-core
 • 2 QDR InfiniBand

Figure 5: Strong scaling results of the framework-based ASUCA on
TSUBAME2.5. The overlapping method improves the overall performance.

Figure 4:
left: Intra-node GPU-GPU
communication by the
OpenMP threads.
right: Inter-node GPU-GPU
communication by MPI
through host memory.

BoundaryExchange *exchange = domain.exchange();
exchange->append(f);
exchange->transfer();

• User-written function (C++ funtor) that updates a grid point
• ArrayIndex3D represents the coordinate of the point where this function is applied.

The functor is executed over all grid points by Loop3D provided by the framework.

struct Diffusion3d {
 __host__ __device__
 void operator()(const ArrayIndex3D &idx,
 float ce, float cw, float cn, float cs, float ct, float cb, float cc,
 const float *f, float *fn) {
 fn[idx.ix()] = cc*f[idx.ix()] + ce*f[idx.ix<1,0,0>()] + cw*f[idx.ix<-1,0,0>()]
 + cn*f[idx.ix<0,1,0>()] + cs*f[idx.ix<0,-1,0>()]
 + ct*f[idx.ix<0,0,1>()] + cb*f[idx.ix<0,0,-1>()];
}};

Diffusion computation

Loop3D loop3d(nx+2*mgnx, mgnx, mgnx, ny+2*mgny, mgny, mgny, nz+2*mgnz, mgnz, mgnz);
loop3d.run(Diffusion3d(), ce, cw, cn, cs, ct, cb, cc, f, fn);

User-written function Parametres are provided to the user-written function.

• Boundary regions of arrays appended by BoundaryExchange::append are
exchanged when BoundaryExchange::transfer is executed.

• Boundary regions are automatically specified by BoundaryExchange class using
Domain class, which has information of the computational domain.

Overlapping method

BoundaryExchange *exchange = domain.exchange();
exchange->append(f);
CompCommBinder<Loop3D> ccbinder(exchange);
ccbinder.set_post_func(&loop,
 create_funcholder<Loop3D>(Diffusion3d(),ce, cw, cn, cs ,ct, cb, cc, f, fn));
ccbinder.run();

• CompCommBinder class
 dividing five regions (in 2D)
 executes Stencil functions and communication in parallelFigure 1: ASUCA simulation

Numerical weather prediction is one of the
major applications in high-performance
computing and is accelerated on GPU
supercomputers. Obtaining high-performance
using thousands of GPUs often needs skillful
programming. The Japan Meteorological Agency
is developing a next-generation high-resolution
meso-scale weather prediction code ASUCA. We
are implementing it on a multi-GPU platform by
using a high-productivity framework. This poster
presents our proposed framework and its
performance evaluation.

mgnx mgnx
nx

mgny

ny

mgny

time
Inside region

Communication
x boundary
x boundary
y boundary
y boundary

time
Inside region

Communication
x boundary
x boundary
y boundary
y boundary

Comp A Comp B

mgnx mgnx
nx

mgny

ny

mgny

time

Whole subdomainCommunication

Whole subdomain

Whole subdomain Divided subdomain

One-divided-kernel overlapping Two-divided-kernel overlapping

x boundary

y boundary

Inside region

Halo region
mgnx mgnx

nx

mgny

ny

mgny

time
Inside region

Communication
x boundary
x boundary
y boundary
y boundary

time
Inside region

Communication
x boundary
x boundary
y boundary
y boundary

Comp A Comp B

mgnx mgnx
nx

mgny

ny

mgny

time

Whole subdomainCommunication

Whole subdomain

Whole subdomain Divided subdomain

One-divided-kernel overlapping Two-divided-kernel overlapping

x boundary

y boundary

Inside region

Halo region

mgnx mgnx
nx

mgny

ny

mgny

time
Inside region

Communication
x boundary
x boundary
y boundary
y boundary

time
Inside region

Communication
x boundary
x boundary
y boundary
y boundary

Comp A Comp B

mgnx mgnx
nx

mgny

ny

mgny

time

Whole subdomainCommunication

Whole subdomain

Whole subdomain Divided subdomain

One-divided-kernel overlapping Two-divided-kernel overlapping

x boundary

y boundary

Inside region

Halo region
mgnx mgnx

nx

mgny

ny

mgny

time
Inside region

Communication
x boundary
x boundary
y boundary
y boundary

time
Inside region

Communication
x boundary
x boundary
y boundary
y boundary

Comp A Comp B

mgnx mgnx
nx

mgny

ny

mgny

time

Whole subdomainCommunication

Whole subdomain

Whole subdomain Divided subdomain

One-divided-kernel overlapping Two-divided-kernel overlapping

x boundary

y boundary

Inside region

Halo region

TSUBAME 2.5 supercomputer at the
Tokyo Institute of Technology

Parallelizing User Code
• User-written main code is executed in all OpenMP threads created by an OpenMP

parallel directive.
DomainGroup domain_group(rank, &manager);
domain_group.run(main_run);

User-written main code , including memory allocation and time integration loop, runs in OpenMP parallel

1 Introduction

2 Overview of Framework

3 Framework Implementation

4 Programming Model

5 Performance results

 Reference

A High-productivity Framework for Multi-GPU Computing of Weather Prediction Code ASUCA

Takashi Shimokawabe (Tokyo Institute of Technology)
shimokawabe@sim.gsic.titech.ac.jp
http://www.sim.gsic.titech.ac.jp/Japanese/Member/shimokawabe

contact name

Takashi Shimokawabe: shimokawabe@sim.gsic.titech.ac.jp
Poster

P5315

category: SuPercomPuTing - Sc11

