CATEGORY: SUPERCOMPUTING - SC11

POSTER CONTACT NAME

P5315 Takashi Shimokawabe: shimokawabe@sim.gsic.titech.ac.jp

A High-productivity Framework for Multi-GPU Computing of Weather Prediction Code ASUCA

shimokawabe@sim.gsic.titech.ac.jp
http://www.sim.gsic.titech.ac.jp/Japanese/Member/shimokawabe

Takashi Shimokawabe (Tokyo Institute of Technology)

The weather prediction code demands large computational performance to achieve fast and high-resolution simulations. Skillful programming techniques are required for obtaining good
parallel efficiency on GPU supercomputers. Our framework-based weather prediction code ASUCA has achieved good scalability with hiding complicated implementation and optimizations
required for distributed GPUs, contributing to increasing the maintainability; ASUCA is a next-generation high-resolution meso-scale atmospheric model being developed by the Japan
Meteorological Agency. Our framework automatically translates user-written stencil functions that update grid points and generates both GPU and CPU codes. User-written codes are parallelized
by MPI with intra-node GPU peer-to-peer direct access. These codes can easily utilize optimizations such as overlapping technique to hide communication overhead by computation.

1 Introduction 3 Framework Implementation Stencil Computation

« User-written function (C++ funtor) that updates a grid point

Whole domain pecomposed subdomains | * Arraylndex3D represents the coordinate of the point where this function is applied.

Numerical weather predictionisone of the | Structure of Framework ST it ynoero- b P > ek

. SRR / s struct Diffusion3d 1 Diffusion computation
major applications in high-performance : : -). __host__ __device__
computing and is accelerated on GPU) Theofra.mework SUPPOT‘ZS multiple GPU computing. / Al - void operator()(const ArrayIndex3D &idx,
supercomputers. Obtaining high-performance + Optimized parallelization: S Conet Float of, float sfm) g ot ce. Thoat ¢, Tloat b, Tloat cc,

. ' | . Inter-node parallelization: MPI library 7 GRuGPUGPU const Tloat 1, Tloal xTn o o
= R fnlidx.ix()] = ccxflidx.ix()] + cexf[idx.ix<1,0,0>()] + cwxf[idx.ix<-1,0,0>()]

Jsing thou§ands of GPUs often needg skillful Intra-node parallelization: OpenMP i ’ + cnxf[idx.ix<0,1,0>()] + csxf[idx.ix<0@,-1,0>()]
programming. The Japan Meteorological Agency + ctxf[idx.ix<0,0,1>()] + cbxf[idx.ix<0,0,-1>()];
is developing a next-generation high-resolution Hie £ y ol . 3§
meso-scale weather prediction code ASUCA. We This framework parallelizes not parts or GPU The functor is executed over all grid points by Loop3D provided by the framework.

ol ting it Iti-GPU platform b computation in the user code but the entire user J
ar? mp e_men Ing | O.n.a muiti Pla .Orm y code from bedinnina to end includina memor Boundary exchange Loop3D loop3d(nx+2xmgnx, mgnx, mgnx, ny+2xmgny, mgny, mgny, nz+2xmgnz, mgnz, mgnz);
using a high-productivity framework. This poster , gir 9 , 9 y Fiqure 2: Multi-GPU computina of loop3d. run(Diffusion3d(), ce, cw, cn, cs, ct, cb, cc, f, fn);

- allocation and time integration loop. 9 : PUEING — - - v -
presents our proposed framework and its mesh-based combutation User-written function ~ Parametres are provided to the user-written function.
performance evaluation. — GPU-GPU communication
GPU GPU GPU E GPU E GPU GPU GPU GPU GPU d] f d d b d E h . d
OpelnMP OpelnMP OpelnMP EOpelnMPiOpelnMP OpelnMP OpelnMP OpelnMP OpelnMP + Boun ary regions ot arrays appended Dy Boun. arytxchange:.append are
thread || thread thread |i| thread Ji thread thread thread || thread thread exchanged when BoundaryExchange::transfer is executed.
MPI process MPI process MPI process - Boundary regions are automatically specified by BoundaryExchange class using
[Domain class, which has information of the computational domain.
Figure 3: Multi-GPU computing by using both MPI and OpenMP. BoundaryExchange *exchange = domain.exchange();
excﬂange—>appen$(f%;
° ° ° —>1 :
Stencil Computation on Grids nsahalcomslolulinl
In order to execute stencil computation on grids, the programmer must describe Overlapplng methOd
functions that update a grid point. The framework provides C++ classes that apply . CompCommBinder class

user-written functions to grids. The user-written functions are executed on grids

sequentially for CPU and in parallel for GPU using CUDA's global kernel functions. dividing five regions (in 2D)

executes Stencil functions and communication in parallel

R

Figue 1: SUCA simulation

GPU-GPU communication BoundaryExchange zexchange = donain- exchange ()
. Intra-node GPU-GPU communication ggggﬁggrsziggegglggogégz(gclig(i)gder(exchange) ;
OVEI’VIGW OfFrameWO"k « Multi-GPU calculations within a same node are performed by an MPI process with create_funcholder<Loop3D>(Diffusion3d(),ce, cw, cn, cs ,ct, cb, cc, f, n));
several OpenMP threads, each of which is assigned to a single GPU. ccbinder.run();
. . . - This communication is performed by just a copy between the memories of two different Jthole subdomain Halo region Divided subdomain A boundan
» The proposed framework is designed for stencil GPUs using cudaMemcpy. 7T ey « boundry , “Fmeny
appllocatlons with explicit time Integration . GPUDirect peer-to-peer access is used when it is supported by two GPUs. ‘ ‘ y boundary D
runnlng on regL.JIa.r StrUCtured ngdS° Inter'nOde GPU'GPU COmmunicatiOH Comn:1unication Wholesubdomaini zzzz:::z; ;
+ The framework is intended to execute user » Three steps of boundary data exchange from GPU to GPU: e ! o tmo Y oboundery. B
programs on NVIDIA's GPUs and CPU. (1) Data transfer from GPU to CPU using the CUDA runtime library j | | ‘ it rogon I,
+ The frameworkis written in the C++ language (2) Data exchange between nodes with the MPI library e o “F oy
and CUDA and can be used in the user code (3) Data transfer back from CPU to GPU with the CUDA runtime library e bl e]
developed in the C++ language. , w Y [S, : mgnx mgnix mgnx mgnx
> Improving portability of both N —— 11 Y e—er Figure 4: P f It
cooperation with the existing codes. communication by the e —
- The framework allows us to write multi-GPU OpenMP threads. |- Overlappin:?1591‘3,6x1280x60 ——
code without considering handling multiple (1) right: Inter-node GPU-GPU | o T | TSUBAME 2.5 supercomputer at the
GPUs ona Smgle .process. : : OpenMP thread OpenMP thread communication by MPI D _:_ SI\;(:TI:ITIIDOII?21:7’23327526"025::’(60 /‘f‘,— TOkyo Institute Of TECh“OIOgy
+ To perform stencil computations on grids, the ‘ g J T through host memory. S 10tk — . Total 4224 NVIDIA Tesla K20X GPUs
odinte 2 01id pont, which is applied 1o entire 5 + Each node of TSUBAME 2.5
’ | MPI process | | MPIl process | g .
grids by the framework . : 3 Tesla K20X GPUs attached to the
4 Pro rammin Model £ PCl Express bus 2.0 x 16 (8 GB/s)
Ref £ . 2 sockets of the Intel CPU Xeon
ererence o e o - -
Parallelizing User Code | R I ererEP) 2:93 GHz O-core
1] T.Shimokawabe, T. Aoki and N, Onodera "High-productivity . User-written main code is executed in all OpenMP threads created by an OpenMP 10° . T D) nnniban
Framework on GPU-rich Supercomputers for Operational parallel directive. 10 Numb 10 £ aPU 10
Weather Prediction Code ASUCA," in Proceedings of the 2014 DomainGroup domain_group(rank, &manager); Lmoet o °
ACMY/IEEE conference on Supercomputing (SC'14), New Orleans, domain_group.run(main_run); Figure 5: Strong scaling results of the framework-based ASUCA on
LA, USA, Nov 2014. User-written main code, including memory allocation and time integration loop, runs in OpenMP parallel TSUBAME2.5. The Overlapping method improves the overall performance.

