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The weather prediction code demands large computational performance to achieve fast and high-resolution simulations. Skillful programming techniques are required for obtaining good
parallel efficiency on GPU supercomputers. Our framework-based weather prediction code ASUCA has achieved good scalability with hiding complicated implementation and optimizations
required for distributed GPUs, contributing to increasing the maintainability; ASUCA is a next-generation high-resolution meso-scale atmospheric model being developed by the Japan
Meteorological Agency. Our framework automatically translates user-written stencil functions that update grid points and generates both GPU and CPU codes. User-written codes are parallelized
by MPI with intra-node GPU peer-to-peer direct access. These codes can easily utilize optimizations such as overlapping technique to hide communication overhead by computation.
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