
4cl(x,y,z,w)<-E(x,y),E(x,z),E(x,w),E(y,z),E(y,w),E(z,w), x<y<z<w.

References
[1] Todd L. Veldhuizen. Triejoin: A Simple, Worst-Case Optimal Join Algorithm. ICDT 2014.
[2] Sean Baxter. Modern GPU Library. http://nvlabs.github.io/moderngpu/index.html
[3] H. Wu, D. Zinn, M. Aref, S. Yalamanchili. Multipredicate Join Algorithms for Accelerating Relational Graph
Processing on GPUs. ADMS 2014.
[4] H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter, M. Garland, S. Yalamanchili. Red Fox: An Execution Environment
for Relational Query Processing on GPUs. CGO 2014.

Algorithm 1: LFTJ-GPU

Split the first trie and map sub-trees to parallel threads
Parallel threads still run sequential LFTJ
Intersections are implemented as binary searches
This method also works for CPU parallelization (LFTJ-CPU)

GPU Accelerated Multi-predicate Join Algorithms for Listing Cliques in Graphs
Haicheng Wu1, Daniel Zinn 2 , Molham Aref 2, and Sudhakar Yalamanchili1

1 Georgia Institute of Technology, 2 LogicBlox Inc.

Listing Cliques

Key ingredients for many graph algorithms such as
• Triangular clustering
• Cohesive subgraph

Extensive attention from

• Graph theory
• Database
• Network analysis

0
1

2
3

4 5

3-clique
(Triangles)

4-clique
0

1

2
3

4

5 6

Motivations

Empower domain users to use general declarative language (e.g., SQL or Datalog)

Multi-predicate join can
• Reduce data movement between binary joins
• Reduce data reorganization (sorting or hash table construction)

Multi-predicate Join

triangle(x,y,z)<-E(x,y),E(y,z),E(x,z), x<y<z.

Datalog Rule

Goal: Porting LeapFrog TrieJoin to GPUs
 LeapFrog TrieJoin (LFTJ)[1]

• A general multi-predicate join algorithm
• Worst case optimal
• Sequential algorithm

A 0 1 3 4 5 6 7 8 9 11

B 0 2 6 7 8 9

C 2 4 5 8 10

seek(2)

seek(3)

seek(6)

seek(8)

seek(8)

next()

seek(10)

seek(10)

LFTJ on 3 unary relations
(intersection)

0 1 2 3

1 2 3 3 4 5

Root

0 1 2 3

1 2 3 3 4 5

Root

0 1 2 3

1 2 3 3 4 5

Root

E(x,y) E(x,z) E(y,z)

x

y

z

LFTJ on 3 tries (Triangle Example)
1. Find one intersection in the current layer

2.
 D

ow
n

to
 th

e
ne

xt
 la

ye
r

Operates similar to Depth First Search (DFS)

E(x,z)

0 1 2 3

1 2 3 3 4 5

Root

0 1 2 3

1 2 3 3 4 5

Root

0 1 2 3

1 2 3 3 4 5

Root
E(x,y) E(y,z)

x

y

z
t0 t1

Example: Mapping to 2 Parallel Threads

Data structure: CSR

0 1 2 3

1 2 3 3 4 5

Root

Children of the same parent are
Sorted and Unique Children of the different parent may not

be Sorted or Unique

1 2 3 3 4 5val

4 5 7 9 10ptr

0 1 2 3

10 10 10 10 10

0 1 2 3 4 5 6 7 8 9

Algorithm 2: GPU-Optimized

Same data structure as Algorithm 1
Operates breadth-first rather than depth-first

• Pro: More parallelism
• Con: Larger memory footprint

 Built on top of ModernGPU library [2]
• Uses Merge-Path framework to partition data for CTAs/threads

• load-balancing between CTAs/threads
• Good memory usage control

• Optimized for coalesced memory accesses.
 Rely on sorted and unique property to reduce binary searches

x

y

z

0 1 2 3

1 2 3 3 4 5

Root

0 1 2 3

1 2 3 3 4 5

Root

0 1 2 3

1 2 3 3 4 5

Root
E(x,y) E(x,z) E(y,z)

sorted intersects sorted

not sorted intersects sorted

not sorted intersects not sorted

BFS Exploration
Intersects layer by layer from the top to the bottom
Divide the problem into

• Parallel node expansion
• Parallel array intersection

No binary searches

Memory Usage Control

Join output size depends on input data
• Maybe empty or maybe much larger than the input size

Naive Implementations are inefficient
• Conservatively reserve large memory to meet the worst case
• Reserve small memory, abort when not enough

 In Algorithm 2, each input computes its output size first
• Partition the data by their output size for kernels
• This is also needed by Merge-Path Framework

Output size generated
by each input

prefix sum

Free mem: 10

p1 p2 p3

0
20
40
60
80

100
120
140
160
180
200

10K 30K 100K 300K 1M 3M 10M 30M 100M

M
ill

io
n

E
dg

es
/s

ec

Edge Number

GPU-Optimized
LFTJ-GPU
LFTJ-CPU
Redfox

0

5

10

15

20

25

30

10K 30K 100K 300K 1M 3M 10M 30M 100M

M
ill

io
n

E
dg

es
/s

ec

Edge Number

GPU-Optimized
LFTJ-GPU
LFTJ-CPU
Redfox

Results
Tr

ia
ng

le

4-
C

liq
ue

Redfox[4] runs a sequence of binary joins to list cliques

Randomly generated data

Runs on 1 GTX Titan and 1
Intel i7-4771

GPU-Optimized runs fastest at
all time

Find more measurement and
analysis in paper[3] including
comparison against GraphLab.

Total output: 23

Use 3 partitions

contact Name

Haicheng Wu: hwu36@gatech.edu
Poster

P5319

Category: Big Data Analytics - BD09

