
4cl(x,y,z,w)<-E(x,y),E(x,z),E(x,w),E(y,z),E(y,w),E(z,w), x<y<z<w. 
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Algorithm 1: LFTJ-GPU 

Split the first trie and map sub-trees to parallel threads 
Parallel threads still run sequential LFTJ  
Intersections are implemented as binary searches 
This method also works for CPU parallelization (LFTJ-CPU) 
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Listing Cliques 

Key ingredients for many graph algorithms such as 
• Triangular clustering 
• Cohesive subgraph 

 
Extensive attention from 

• Graph theory 
• Database 
• Network analysis 
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Motivations 

Empower domain users to use general declarative language (e.g., SQL or Datalog) 
 

Multi-predicate join can 
• Reduce data movement between binary joins 
• Reduce data reorganization (sorting or hash table construction) 

 
 

Multi-predicate Join 

triangle(x,y,z)<-E(x,y),E(y,z),E(x,z), x<y<z. 
 

Datalog Rule 

Goal: Porting LeapFrog TrieJoin to GPUs 
 LeapFrog TrieJoin (LFTJ)[1] 

• A general multi-predicate join algorithm 
• Worst case optimal 
• Sequential algorithm 
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LFTJ on 3 unary relations 
(intersection) 
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LFTJ on 3 tries (Triangle Example) 
1. Find one intersection in the current layer 
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Operates similar to Depth First Search (DFS) 

E(x,z) 

0 1 2 3 

1 2 3 3 4 5 

Root 

0 1 2 3 

1 2 3 3 4 5 

Root 

0 1 2 3 

1 2 3 3 4 5 

Root 
E(x,y) E(y,z) 

x 

y 

z 
t0 t1 

Example: Mapping to 2 Parallel Threads 

Data structure: CSR 
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Root 

Children of the same parent are 
Sorted and Unique Children of the different parent may not 

be Sorted or Unique 
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Algorithm 2: GPU-Optimized 

Same data structure as Algorithm 1 
Operates breadth-first rather than depth-first 

• Pro: More parallelism 
• Con: Larger memory footprint 

 Built on top of ModernGPU library [2] 
• Uses Merge-Path framework to partition data for CTAs/threads 

• load-balancing between CTAs/threads 
• Good memory usage control 

• Optimized for coalesced memory accesses. 
 Rely on sorted and unique property to reduce binary searches 
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sorted intersects sorted 

not sorted intersects sorted  

not sorted intersects not sorted 

BFS Exploration 
Intersects layer by layer from the top to the bottom 
Divide the problem into 

• Parallel node expansion 
• Parallel array intersection 

No binary searches 

Memory Usage Control 

Join output size depends on input data 
• Maybe empty or maybe much larger than the input size 

Naive Implementations are inefficient  
• Conservatively reserve large memory to meet the worst case 
• Reserve small memory, abort when not enough 

 In Algorithm 2, each input computes its output size first 
• Partition the data by their output size for kernels 
• This is also needed by Merge-Path Framework 

Output size generated 
by each input 

prefix sum 

Free mem: 10 
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Redfox[4] runs a sequence of binary joins to list cliques 

Randomly generated data 
 

Runs on 1 GTX Titan and 1 
Intel i7-4771 
 

GPU-Optimized runs fastest at 
all time 
 

Find more measurement and 
analysis in paper[3] including 
comparison against GraphLab. 

Total output: 23 
 

Use 3 partitions 
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