CATEGORY: BIG DATA ANALYTICS - BD09

POSTER

P5319

CONTACT NAME

Haicheng Wu: hwu3é@gatech.edu

GPU Accelerated Multi-predicate Join Algorithms for Listing Cliques in Graphs

Haicheng Wu', Daniel Zinn 2, Molham Aref?, and Sudhakar Yalamanchili’ '

2 LOGICBLOX

! Georgia Institute of Technology, 4 LogicBlox Inc.

Intel Science & Technology
Center for Cloud Computing

Motivations Goal: Porting LeapFrog TriedJoin to GPUs

» LeapFrog TriedJoin (LFTJ)[1]
* A general multi-predicate join algorithm
* Worst case optimal
« Sequential algorithm

Listing Cligues

» Key ingredients for many graph algorithms such as
* Triangular clustering
* Cohesive subgraph

» Empower domain users to use general declarative language (e.g., SQL or Dataloq)

» Multi-predicate join can
 Reduce data movement between binary joins

» Extensive attention from * Reduce data reorganization (sorting or hash table construction . :
. Graph theory J (2) LFTJ on 3 tries (Triangle Example)
 Database Datalog Rule LFTJ on 3 unary relations 1. Find one intersection in the current layer
i : ; S
* Network analysis (intersection) = E(x.y) E(y,2) E(x.2)
3-clique triangle(x,y,z)<-E(x,y),E(y,2),E(x,z)] x<y<z. E Root Root Root
(Triangles) seek(z) ___seekfs) [seek(10) :% A
A 0 1 3 4 5 6 71819 11 ﬁ x 0 1 2 3 0 1 2 3
Multi-predicate Join _oee ceckB)| | seekD) & VARAN ,L
. B 0 2 6 71819 ~ y 1 23345 0 1 2 3
4-clique A §
4cl(x,y,z,w)<E(x,y),E(x,2),E(x,w),E(y,z),E(y,w),E(z,w),|x<y<z<w. _— — | e S " "
C 2 4 5 8 10 N 74 1 23345 1 23345

Operates similar to Depth First Search (DFS)

Algorithm 1: LFTJ-GPU

> Split the first trie and map sub-trees to parallel threads

» Parallel threads still run sequential LFTJ

> Intersections are implemented as binary searches

» This method also works for CPU parallelization (LFTJ-CPU)

Ing to 2 Parallel Threads

E(x,y) E(y,z) E(x,z)
Root Root Root

Example: Ma

Algorithm 2: GPU-Optimized

» Same data structure as Algorithm 1
» Operates breadth-first rather than depth-first
* Pro: More parallelism
* Con: Larger memory footprint
» Built on top of ModernGPU library [2]
* Uses Merge-Path framework to partition data for CTAs/threads
* |oad-balancing between CTAs/threads
* Good memory usage control
* Optimized for coalesced memory accesses.

Memory Usage Control

» Join output size depends on input data
* Maybe empty or maybe much larger than the input size
»Naive Implementations are inefficient
* (Conservatively reserve large memory to meet the worst case
* Reserve small memory, abort when not enough
» In Algorithm 2, each input computes its output size first
* Partition the data by their output size for kernels
* This is also needed by Merge-Path Framework

Free mem: 10

A T T » Rely on sorted and unique property to reduce binary searches Output size generated
: 3482|573
y 1 2 3 3 4 5 A 7\ by each input
prefix sum 0 [317 11571720 Total output: 23
1 23345

zZ 2334

BFS Exploration

» Intersects layer by layer from the top to the bottom
» Divide the problem into

p1 p2 p3 Use 3 partitions

Data structure: CSR

. o Results
° - -Optimize
Roof L Parallel node expansion o | e LRGNy
A valfoT1T23[1]273]3[4]5 * Parallel array intersection © § 0l R »Randomly generated data
) 1 2 2 ptr 4« % éﬂ 13,3
JANEIVAN E(x.y) E(y,z) E(x,2) E = - >Runs on 1 GTX Titan and 1
1 2 3 [3 485 Root Root)& 2 - Intel i7-4771
™~ Children of the same parent are < F{?% / 7N\ 0 1 2 3 sorted intersects sorted 10K 30K 100K 300K 1M 3M 10M 30M 100M
Children of the different parent may not Sorted and Unique S/ L\ Edge Number C
be Sorted or Unique yJI 2,A,3 3A21 % 0 1 2 3 not sorte\l intersects sorted 30 - S >GPQ-Optlm|zed runs fastest at
25 - -0+ LFTJ-GPU all time
A A l Q é —O~LFTJ-CPU
z 123345 | 33324 % |notsorted intdrsects not sorted > &]
= = 15 -
References S Q £] » Find more measurement and
[1] Todd L. Veldhuizen. Trigjoin: A Simple, Worst-Case Optimal Join Algorithm. ICDT 2014. < = O . : :
[2] Sean Baxter. Modern GPU Library. http://nvlabs.github.io/moderngpu/index.htmi S1 ke TR S — O anaIyS|s 18 paper[3] |nCIud|ng
[3] H. Wu, D. Zinn, M. Aref, S. Yalamanchili. Multipredicate Join Algorithms for Accelerating Relational Graph o | &

Processing on GPUs. ADMS 2014. 10K 30K 100K 300K 1M 3M 10M 30M 100M comparison agamSt Graphl—ab-

[4] H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter, M. Garland, S. Yalamanchili. Red Fox: An Execution Environment
for Relational Query Processing on GPUs. CGO 2014.

No binary searches

Edge Number Redfox[4] runs a sequence of binary joins to list cliques

