
4cl(x,y,z,w)<-E(x,y),E(x,z),E(x,w),E(y,z),E(y,w),E(z,w), x<y<z<w.

References
[1] Todd L. Veldhuizen. Triejoin: A Simple, Worst-Case Optimal Join Algorithm. ICDT 2014.
[2] Sean Baxter. Modern GPU Library. http://nvlabs.github.io/moderngpu/index.html
[3] H. Wu, D. Zinn, M. Aref, S. Yalamanchili. Multipredicate Join Algorithms for Accelerating Relational Graph
Processing on GPUs. ADMS 2014.
[4] H. Wu, G. Diamos, T. Sheard, M. Aref, S. Baxter, M. Garland, S. Yalamanchili. Red Fox: An Execution Environment
for Relational Query Processing on GPUs. CGO 2014.

Algorithm 1: LFTJ-GPU

Split the first trie and map sub-trees to parallel threads
Parallel threads still run sequential LFTJ
Intersections are implemented as binary searches
This method also works for CPU parallelization (LFTJ-CPU)

GPU Accelerated Multi-predicate Join Algorithms for Listing Cliques in Graphs
Haicheng Wu1, Daniel Zinn 2 , Molham Aref 2, and Sudhakar Yalamanchili1

1 Georgia Institute of Technology, 2 LogicBlox Inc.

Listing Cliques

Key ingredients for many graph algorithms such as
• Triangular clustering
• Cohesive subgraph

Extensive attention from

• Graph theory
• Database
• Network analysis

0
1

2
3

4 5

3-clique
(Triangles)

4-clique
0

1

2
3

4

5 6

Motivations

Empower domain users to use general declarative language (e.g., SQL or Datalog)

Multi-predicate join can
• Reduce data movement between binary joins
• Reduce data reorganization (sorting or hash table construction)

Multi-predicate Join

triangle(x,y,z)<-E(x,y),E(y,z),E(x,z), x<y<z.

Datalog Rule

Goal: Porting LeapFrog TrieJoin to GPUs
 LeapFrog TrieJoin (LFTJ)[1]

• A general multi-predicate join algorithm
• Worst case optimal
• Sequential algorithm

A 0 1 3 4 5 6 7 8 9 11

B 0 2 6 7 8 9

C 2 4 5 8 10

seek(2)

seek(3)

seek(6)

seek(8)

seek(8)

next()

seek(10)

seek(10)

LFTJ on 3 unary relations
(intersection)

0 1 2 3

1 2 3 3 4 5

Root

0 1 2 3

1 2 3 3 4 5

Root

0 1 2 3

1 2 3 3 4 5

Root

E(x,y) E(x,z) E(y,z)

x

y

z

LFTJ on 3 tries (Triangle Example)
1. Find one intersection in the current layer

2.
 D

ow
n

to
 th

e
ne

xt
 la

ye
r

Operates similar to Depth First Search (DFS)

E(x,z)

0 1 2 3

1 2 3 3 4 5

Root

0 1 2 3

1 2 3 3 4 5

Root

0 1 2 3

1 2 3 3 4 5

Root
E(x,y) E(y,z)

x

y

z
t0 t1

Example: Mapping to 2 Parallel Threads

Data structure: CSR

0 1 2 3

1 2 3 3 4 5

Root

Children of the same parent are
Sorted and Unique Children of the different parent may not

be Sorted or Unique

1 2 3 3 4 5val

4 5 7 9 10ptr

0 1 2 3

10 10 10 10 10

0 1 2 3 4 5 6 7 8 9

Algorithm 2: GPU-Optimized

Same data structure as Algorithm 1
Operates breadth-first rather than depth-first

• Pro: More parallelism
• Con: Larger memory footprint

 Built on top of ModernGPU library [2]
• Uses Merge-Path framework to partition data for CTAs/threads

• load-balancing between CTAs/threads
• Good memory usage control

• Optimized for coalesced memory accesses.
 Rely on sorted and unique property to reduce binary searches

x

y

z

0 1 2 3

1 2 3 3 4 5

Root

0 1 2 3

1 2 3 3 4 5

Root

0 1 2 3

1 2 3 3 4 5

Root
E(x,y) E(x,z) E(y,z)

sorted intersects sorted

not sorted intersects sorted

not sorted intersects not sorted

BFS Exploration
Intersects layer by layer from the top to the bottom
Divide the problem into

• Parallel node expansion
• Parallel array intersection

No binary searches

Memory Usage Control

Join output size depends on input data
• Maybe empty or maybe much larger than the input size

Naive Implementations are inefficient
• Conservatively reserve large memory to meet the worst case
• Reserve small memory, abort when not enough

 In Algorithm 2, each input computes its output size first
• Partition the data by their output size for kernels
• This is also needed by Merge-Path Framework

Output size generated
by each input

prefix sum

Free mem: 10

p1 p2 p3

0
20
40
60
80

100
120
140
160
180
200

10K 30K 100K 300K 1M 3M 10M 30M 100M

M
ill

io
n

E
dg

es
/s

ec

Edge Number

GPU-Optimized
LFTJ-GPU
LFTJ-CPU
Redfox

0

5

10

15

20

25

30

10K 30K 100K 300K 1M 3M 10M 30M 100M

M
ill

io
n

E
dg

es
/s

ec

Edge Number

GPU-Optimized
LFTJ-GPU
LFTJ-CPU
Redfox

Results
Tr

ia
ng

le

4-
C

liq
ue

Redfox[4] runs a sequence of binary joins to list cliques

Randomly generated data

Runs on 1 GTX Titan and 1
Intel i7-4771

GPU-Optimized runs fastest at
all time

Find more measurement and
analysis in paper[3] including
comparison against GraphLab.

Total output: 23

Use 3 partitions

contact name

Haicheng Wu: hwu36@gatech.edu
Poster

P5319

category: Big Data analytics - BD09

