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Motivations Goal: Porting LeapFrog TriedJoin to GPUs

» LeapFrog TriedJoin (LFTJ)[1]
* A general multi-predicate join algorithm
* Worst case optimal
« Sequential algorithm

Listing Cligues

» Key ingredients for many graph algorithms such as
* Triangular clustering
* Cohesive subgraph

» Empower domain users to use general declarative language (e.g., SQL or Dataloq)

» Multi-predicate join can
 Reduce data movement between binary joins

» Extensive attention from * Reduce data reorganization (sorting or hash table construction . :
. Graph theory J ( 2 ) LFTJ on 3 tries (Triangle Example)
 Database Datalog Rule LFTJ on 3 unary relations 1. Find one intersection in the current layer
i : ; S
* Network analysis (intersection) = E(x.y) E(y,2) E(x.2)
3-clique triangle(x,y,z)<-E(x,y),E(y,2),E(x,z)] x<y<z. E Root Root Root
(Triangles) seek(z) ___seekfs) [ seek(10) :% A
A 0 1 3 4 5 6 71819 11 ﬁ x 0 1 2 3 0 1 2 3
Multi-predicate Join _oee ceckB)| | seekD) & VARAN ,L
. B 0 2 6 71819 ~ y 1 23345 0 1 2 3
4-clique A §
4cl(x,y,z,w)<E(x,y),E(x,2),E(x,w),E(y,z),E(y,w),E(z,w),|x<y<z<w. _— — | e S " "
C 2 4 5 8 10 N 74 1 23345 1 23345

Operates similar to Depth First Search (DFS)

Algorithm 1: LFTJ-GPU

> Split the first trie and map sub-trees to parallel threads

» Parallel threads still run sequential LFTJ

> Intersections are implemented as binary searches

» This method also works for CPU parallelization (LFTJ-CPU)
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Algorithm 2: GPU-Optimized

» Same data structure as Algorithm 1
» Operates breadth-first rather than depth-first
* Pro: More parallelism
* Con: Larger memory footprint
» Built on top of ModernGPU library [2]
* Uses Merge-Path framework to partition data for CTAs/threads
* |oad-balancing between CTAs/threads
* Good memory usage control
* Optimized for coalesced memory accesses.

Memory Usage Control

» Join output size depends on input data
* Maybe empty or maybe much larger than the input size
»Naive Implementations are inefficient
* (Conservatively reserve large memory to meet the worst case
* Reserve small memory, abort when not enough
» In Algorithm 2, each input computes its output size first
* Partition the data by their output size for kernels
* This is also needed by Merge-Path Framework
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BFS Exploration

» Intersects layer by layer from the top to the bottom
» Divide the problem into

p1 p2 p3 Use 3 partitions

Data structure: CSR
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No binary searches

Edge Number Redfox[4] runs a sequence of binary joins to list cliques



